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EXECUTIVE SUMMARY

Many sites of groundwater contamination rely heavily on complex numerical models of
flow and transport to develop closure plans. This has created a need for tools and approaches that
can be used to build confidence in model predictions and make it apparent to regulators, policy
makers, and the public that these models are sufficient for decision making. This confidence
building is a long-term iterative process and it is this process that should be termed *model
validation.” Model validation is a process not an end resuit. That is, the process of model
validation cannot always assure acceptable prediction or quality of the model. Rather, it provides
safeguard against faulty models or inadequately developed and iested models. Therefore,
development of a systematic approach for evaluating and validating subsurface predictive
models and guiding field activities for data collection and long-term monitoring is strongly
needed. This report presents a review of mode! validation studies that pertain to groundwater
flow and transport modeling. Definitions, literature debates, previously proposed validation
strategies, and conferences and symposia that focused on subsurface mode] validation are
reviewed and discussed. The review is general in nature, but the focus of the discussion is on
site-specific, predictive groundwater models that are used for making decisions regarding
remediation activities and site closure. An atiempt is made to compile most of the published
studies on groundwater model validation and assemble what has been proposed or used for
validating subsurface modeis. The aim is to provide a reasonable starting point to aid the
development of the validation plan for the groundwater flow and transport model of the Faultless
nuclear test conducted at the Central Nevada Test Area (CNTA).

The review of previous studies on model validation shows that there does not exist a set
of specific procedures and tests that can be easily adapted and applied to determine the validity
of site-specific groundwater models. This is true for both deterministic and stochastic models,
with the latter posing a more difficult and challenging problem when it comes to validation. This
report then proposes a general validation approach for the CNTA model, which addresses some
of the important issues recognized in previous validation studies, conferences, and symposia as
crucial to the process. The proposed approach links model building, modet calibration, model
predictions, data collection, model evaluations, and mode} validation in an iterative loop. The
approach focuses on vse of collected validation data to reduce model uncertainty and narrow the
range of possible outcomes of stochastic numerical models. H accounts for the stochastic nafure
of the numerical CNTA model, which used Monte Carlo simulation approach. The proposed
methodology relies on the premise that absolute validity is not even a theoretical possibility and
is not a regulatory requirement. Rather, it highlights the importance of testing as many aspects of
the model as possible and using a2s many diverse stafistical tools as possible for rigorous -
checking and confidence building in the model and its predictions. It is this confidence that wAill
eventually allow for regulator and public acceptance of decisions based on the mode! predictions.
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1. INTRODUCTION

Many of the most difficult environmenial problems facing scientists pertain to
groundwater contamination. Contaminants rtange from solvents and heavy metals to
radionuclides, and they come from a wide variety of sources ranging from leaking tanks to
underground nuclear tests. All of these problems have in common the need to demonsirate
understanding of past, present, and fuiure migration behavior in subsurface sysiems where there
are limited opportunities to make observaiions. As a result, resolution of groundwater
contamination problems relies extensively on numerical models of flow and transpori. Great
advances in both theoretical and applied areas of numerical modeling have been made in recent
years, driven in lirge part by advances in computer resources. This has enabled sophisticaled
incorporation of the uncertainty inherent in all analyses of the subsurface through use of
stochasiic techniques (e.g., Dagan, 1989; Gelhar, 1993; Cushman, 1997).

During the past two decades, hydrogeologic studies have commoniy used stochastic tools
to incomporate the effects of spatial varability of hydrologic properties and parametric
uncertainty inte the predictive capabilities of numerical groundwater flow and contaminant
transpori models. These studies have made it clear that inadeguate and insufficient data limit the
ability of these models to predict system behavier without substantial uncertainty (e.g., Pohll er
al.,, 1999; Pohlmann et of., 2000, Hassan et al., 2001). Uncenainty is always inherent in the
model prediction and is the resull of the inability to fully characienize the subsurface
environment and the processes conirolling the system behavior, Full characterization is limited
by access to the subsurface, which requires extensive borehole driiling that can adversely affect
the integrity of the geologic structure of the site or be prohibitively expensive. The stochastic
tools used to overceme or address the issues of uncertainty provide prediciions as ranges of
output with associated probabilities or confidence levels.

The significant advances in computational resources made in the past decade have
elevated the level of complexity of numerical and analytical stochastic models te such a high
level that a gap has been created between model results and confident assessment of the accuracy
(or at least relevance) of model simulations by reguiators and the public. The acceptance of the
model results by the regulators and the public is an essential prerequisite to close subsurface
contaminated sites. This acceptance is difficult to aitain with the large range of uncertainty
associated with the predictions of these stochastic models. Inclusion of a model validation phase
is probably the best way to address this problem and it can achieve buy-in for a closure process
involving numerical groundwater modeling. Model validation is the process of evaluating and
testing the different aspects of the model for the purpose of refining, enhancing, and building
confidence in the model predictions in such a way that allows for sound decision-making. It is
the process that follows the determination that the model is well developed and calibrated, after
sensitivity analysis indicates insignificant uncertainty reduction from additional characierization
efforts. At this stage, and to allow for making decisions based on the moedel resulis, the model
validation process should start. Model validation is thus a process, not an end result by itself. It
cannot ensure an acceptable model. Rather, it provides a safeguard against faulty models or
nadequately developed and tested models. If the validation process indicates that major
deficiencies exist in the model and a new round of characterization, conceptualization,
calibration, modeling, and prediction is needed, it does not mean that the validation process
failed. On the contrary, this means that the “process™ is successful in achieving its objectives. If
the refined model resuits are proven (through the validation process) to be neot in any major



contradiction with field data and these results end up being used as the basis for decision-
making, then the validation process indicates that the model is valid for making decisions (not
necessarily a true or exact representation of reality).

Regulators and decision makers should understand that there is no way to guarantee that a
model-based decision is always correct, or that a model can ever be proven to be valid in the
strictest sense of the term (van der Heijde, 1990). Many assert that it is impossible to validate a
groundwater numerical model because such a claim would assert a demonstration of truth that
can never be attained for our approximate solutions to subsurface problems (Oreskes er al.,
1994). These views consider the validation from the striciest definition of the word, as will be
discussed later. Again, the model validation “process™ should not be viewed as a mechanism for
proving that the model is valid, but rather as a mechanism for enhancing the model, reducing its
uncertainty, and improving its predictions through an iterative, long-term, confidence-building
process. The process should also contain trigger mechanisms that will dnve the model back 1o
the charactenzation-conceptualization-calibration-prediction loop {i.e., back to square one), but
with & better understanding of the modeled system.

Implementing a validation process can help move the modeling preject forward beyond
the endless loop of characterization, conceptualization, calibration, and prediction, yet will also
provide a way back to this loop. However, different parties understand validation in different
ways, and there is an urgent need to unify the concepts of mode! validation and develop a
systematic way of testing and evaluating model predictions. This may facilitate acquiring the
acceptance of the regulators and the public of the model-based decisions, especially with many
sites {(e.g., U.S. Department of Energy [DOE] and U.S. Department of Defense {DoD] sites) now
naving closure processes “knocking on the door” of validation. The development and use of
rigorous science to define a process that site sponsors, regulators, and the public can accept will
benefit all involved parties,

An actual case that is currently facing the issue of model validation is the Central Nevada
Test Area (CNTA), where the Faultless underground nuclear test is undergoing environmental
restoration. Underground nuclear test sites are extreme examples of the need for groundwater
modeling and for model validation, as a significant radionuclide source will be left in contact
with groundwater due to the absence of technically feasible remediation technotogy. Instead,
regulatory closure will depend on a model-generated contaminant boundary (boundary of the
arca having contaminant concentration exceeding certain threshold) for exercising stewardship
restrictions. Confidence in the model resuits is absolutely critical to achieve closure. A complex,
three-dimensional stochastic flow and transport model was developed for the CNTA site
{Pohlmann ef al.,, 1999, 2000) and carefully reviewed by the state regulator. Though several
aspects of uncertainty were included in that model. concerns remained regarding uncertainty in
individual parameier values and the additive effects of multiple sources of uncertainty. A Data
Decision Analysis {DDA) was performed {Pohll and Miheve 2000) to quantify uncertainty in the
existing model and determine the most cost-beneficial activities for reducing uncertainty, if
reduction was needed. The DDA indicated that though there was large uncertainty present in
some model parameters, the overall uncertainty in the calculated contaminant boundary (areas
having contamination ¢xceeding a certain standard) during the 1,000-year regulatory timeframe
was relatively small. As a result, only limited uncertainty reduction could be expected from
expensive characterization activities. With these results, the model sponsor {DOE) and the
regulator (Nevada Division of Environmental Protection) determined that the site model was
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suitable for moving forward in the corrective action process. Key to this acceptance was the
acknowledgment that the model requires independent validation data and that the site requires
long-term monitoring (Chapman ef al., 2002). Thus, the CNTA model is in immediate need of a
validation approach that can stand up io the rigors of scientific peer review, regulatory oversight,
and citizen concems.

Other sites share the need for an effective validation strategy (e.g., the Shoal underground
test area, Nevada; Hanford Site, Washington; Maxey Flats, Kentucky, Fernald, Ohie; Cak Ridge
National Laboratory, Tennessee; Weldon Springs, Missouri; Nevada Test Site), so that model
validation is one of the most critical and challenging issues facing modelers, scientists and
regulatory and government agencies. Unfortunately, there does not exist a set of specific
procedures and tests that can be easily adapted and applied to determine the validity of a
deterministic model, particularly a site-specific model. The validalion issue is even more
challenging for the “predichive™ siochastic models that incorporale effects of parameter
uncertainty and spatial variability. As pointed out by Konikow (1986}, if a mode) is to be used
for prediction, it should be periodically postaudited, or recalibrated, to incorporate new data and
information that may provide different understanding of the processes studied at a certain site.
The step of moving forward in the face of uncertainty and proceeding to the validation and long-
termn monitoring of the Central Nevada Test Area (CNTA) model is consistent with this
paradigm since the validation phase and monitoring phase will serve as the periodic postaudit of
the CNTA model.

The purpose of this validation pian is 1o outline a stralegy for the different activities that
are needed for testing the predictions of the CNTA model. These activities include the field
activities for collecting the testing data, the scieniific approach that will be used to test the model
predictions using these data, the iterative scheme of refining the model and collecting data, and
the long-term vision for monitoring the site. Through the validation stage, the focus will be on
three major issues: 1) to test how the predictions of the numerical groundwater flow and
transport model at CNTA and the underlying conceptual model and assumptions are robust {see
definition later) and consistent with the regulatory purposes; 2) to re-evaluate and refine modet
predictions and reduce the uncertainty level based on data coilected in the proposed field
activities for this validation; and 3} start the long-term monitoring phase of the site that benefits
from and builds on the validation-phase field activities.

In this report, we propose a validation approach for the CNTA model, which addresses
some of the imporiant issues that were recognized in previous validation studies, conferences,
and symposia as crucial to the precess. The proposed approach is an integrated approach that
uses & number of tools and approaches for evaluating the predictive CNTA model, refining its
predictions, reducing the associated uncertainty, and building the confidence necessary for site
closure. The proposed validation methedology focuses on use of collected validation data fo
reduce model uncertainty and narrow the range of possible outcomes of stochastic numerical
models. This requires iterative implementation of data coilection, model evaluation, model
refinement, and uncertainty reduction. This is pariicularly critical in radionuclide transport
models such as the CNTA mode! since only a few aspects of the transport modeling results can
be tesied. This is because the predictions of the model extend thousands of vears into the future
and no data can be used at this time scale. The key strategy will be to focus on evaluating other
model elements (e.g., geologic model, model structure, and flow model) using validation data,
which will help refine transport predictions and reduce their uncertainty.



It is important to recognize that the validation issues reviewed in this article are different
from many popular model siudies that relied on particular field experiments and employed the
term “model validation,” which referred to validating “process” models or mathematical models..
These experiments, primarily designed for studying and modeling subsurface phenomena,
include the Cape Cod expeniment (e.g., LeBlanc et al., 1991; Hess et af., 1992), the Borden site
test (e.g., Mackay ef af., 1986; Freyberg, 1986}, the Macrodispersion Experiment (MADE}) site
(e.g., Boggs et al., 1992), the Twin Lake natural gradient tracer experiment (e.g., Moltyaner ef
al., 1993), and the Grimsel tracer migration experiments {Frick, 1994). These experiments
provided well-characterized sites and reasonably large data sets for calibrating and validating
certain process and mathematical medels. The common theme was 1o develep different process
models for understanding the physics of flow and transport in the subsurface and use these
characterized sites for validaling the model conceptualizations and mathematical formulation.
Another set of studies focused on calibrating and validating different mathematical models using
tracer test results in fractured aquifers {e.g., Maloszewsk: and Zuber, 1992, 1993; Cacas ef al.,
1990a, b: Raven et af., 1988; Shapiro and Nicholas, 1989). The scope of these validation studies
was 10 determine whether the values of the model-fitted parameters agreed with those known
from independent determinaticns. The term “model validation” was frequently used in these and
other studies and it essentially meant validating a certain mathematical model or verifying the
existence of certain processes (e.g., matrix diffusion) using well-characterized field experiments.
In addition, the field experiments in these studies were available @ priori; and models were
developed, calibrated, and validated afterwards. For the “predictive” model validation issue we
seek to address, validation data musi be independent of the characterization and calibration data
used to construct the model.

As the two words forming “model validation™” have been used with too many different
meanings, and since some other terms are interchangeably used for the term “validation,” it is
necessary to define different terms and to illustrate the intended meaning of these terms when
used in this report. The remainder of this report is therefore organized as follows. We present in
Section 2 a discussion of the reasons that necessitate the need for validation and the challenges
associated with vaiidating a site-specific model such as the CNTA model. In Section 3, we then
review the different aspects and definitions of terms such as model, calibration, verification and
validation. The purpose of this section is to present clear definitions of and differentiations
between the different terminologies as adapted in this report. Model calibration, verification, and
validation are thoroughly discussed in this section with a deiailed presentation of the
discrepancies and the debate in the literature about the meamng and purposes of model
validation. Section 4 presents a literature review of the studies and international projecis that
dealt with model validation issues. This section also discusses the different strategies that were
proposed for validating subsurface models {mainly, models of performance assessment of high-
level nuclear waste repositories). Section 5 discusses the critical issues and considerations that
should be accounted for in developing a model validation plan. Finally, Section é outlines a
proposed validation plan for the CNTA model with detailed descriptions of some of the
underlying theories and hypotheses presented in the Appendices.

2. NEED FOR AND CHALLENGES FACING MODEL VALIDATION
2.1 Need for Validation

Predicting groundwater flow and transport at the field scale is usually done for a specific
purpose. A regulatory question arises at a site, for example, and modeling i1s undertaken to
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answer that question. The need for validation arises when the regulatory agency and
subsequently the public require assurance that the model’s answer to the posed question is a
close representation of reality {or at least a conservative estimate). Developers and users of
models {(i.e., the decision-makers using information derived from model results) and people
affected by decisions based on such models are all rightly concerned with whether the mode! and
its results are “cotrect” (Sargent, 1990). However, depending on the model and the application in
question, the comrectness requirement may become one of reasonableness. For groundwater
models, for instance, all involved parties should be able to understand that the correctness
requirement cannot be achieved. Instead, the requirement should shift 1o good modeling protocol
followed by long-term validation and monitoring processes to make sure that the predicted
consequences are not underestimated.

As described by Shah Alam (1998), regulators want io be certain that human heaith and
the environment are being protected and general public participation is a key element in a
regulatory decision-making process for a contaminated site. Affected public should be able to
comprehend and concur with the model on their terms. This is difficull to achieve without a
long-term commiiment of evaluating and re-evaluating the model results {thus going through a
validation process) based on data collected for the validation process and for the long-term
monitoring of the site. Most regulaiors understand modeling well enough to know that a model
cannot be proven to be “correct.” Rather, they are seeking evidence that the model is sufficient
for decision making and that model predictions are being thoroughly tested against site-specific
data.

As described by the National Research Council (NRC, 2000), monitoring and validaticn
are needed to improve the understanding of the contaminant fate and transport processes and can
be used to recalibrate and revise concepituat and predictive models. NRC (2000} indicates that
the ability to monitor and validaie is essential to the application of any cormrective action to a
subsurface contamination problem, but the knowledge and technology bases to support these
activities are not fully developed. NRC {2000} thus identifies a number of research needs related
to the model validation issue that include the development of validation processes, the
development of tools to help judge model performance, and the development of ways to
determine the key measurements that are required for the model validation process.

The interest in validating model predictions also arises from the scientific need to better
understand the physics of flow and transport in highly complex systems such as the geologic
environment. In fact, the invalidated models provide a scientific challenge to researchers to
identify the sources of errors in the model and whether these are related to processes that are
unresolved or unaccounted for, mode! structure and conceptual model or input data. In the search
for these error sources, new scientific understanding can be gained and progress is usuaily made
by these discoverigs. '

Aside from these scientific and regulatory motives, and from a relatively legal
perspective, the need for subsurface model validation in the U.S. arises from at least two sources
(Davis and Goodrich, 1990; Davis et gf, 1991}. The Code of Federal Regulations states
explicitly in 10 CFR Part 60.21(c}1)(ii)(F} that “Analyses and medels that will be used to
predict future conditions and changes in the geologic seiting shall be supported by using an
appropriate combination of such methods as field tests, in-situ tests, laboratory tests which are
representative of field conditions, monitoring data, and natural analogue stadies.” Although this
does not call for the strictest applicaticn of the term *‘validation,” it does require field tests and



in-situ tests as means for supperting the model (i.e., supporting its use for decision making,
which is consistent with our model validation definition presented earlier). The second source
quoted by Davis ef al. (1991) is the legal precedent establishing the need for validation, which
was sei based on the court case involving the State of Ohio and the U.S. Environmental
Protection Agency (EPA) [23 ERC 2091, Sixth Circuit, 1986]. In that case, the court decided that
EPA had failed to establish the accuracy of a model that was used for predicting sulfur dioxide
emissions from two electric utility plants, as compared with the actual discharge from the plants.
The adequacy of the model for its intended use (establishing limitations on sulfur dioxide
emissions at the specific power plants) was not checked using the site-specific validation tests.

2.2 Challenges

A number of issues combine to make the validation of subsurface flow and transport
models a very difficull and challenging task. First, data are usually lacking for mulding,
calibrating and running the model. Such data are lacking for both simple deterministic models
and highly complex stochastic models. Even if there are extensive databases for a particular site,
they are often limited with respect to the variety of conditions and parameters that need to be
monitored and characterized. With the current level of data scarcity and unceriainty, model
validation becomes a formidable task. The question of validation is even more challenging when
modeling radionuclide transport thousands of years inio the future since no data are available to
use for comparison against model predictions at this time scale. In addition, lack of knowledge
about future siresses that will affect the groundwater system reduces the rehability of fuiure
predictions. Despiie these challenges, we need to build confidence that model-based decisions
will not result in unacceptable risks to present or future populations or in degradation of the
natural environment {(Konikow and Bredehoeft, 1992). Building confidence in the models used to
support closure of sites is the requirement for validation; developing a validation process that
allows regulatory closure of sites with significant groundwater contamination should, therefore,
be the ultimate goal of any validation strategy.

Konikow and Bredehoeft (1992) further argus that the only solution to the above
challenge is the noticn that our fundamental undersianding of the processes encouniered in the
subsurface will help make defensible long-term predictions. Expert judgment and the approval of
the scientific community come into the picture under these challenges. Models, however, serve
to sharpen our professionzl judgment and increase our understanding of the very complex
subsurface systems. Heterogeneity is another challenge when it comes to prediction and
validation. Heterogeneity makes it difficult to fully characterize the subsurface, especially with
the difficulty of making subsurface observations. When heterogeneity is significant and datza are
limited, as is the case in many field sites, there may be no objective way of judging the model
predictions or declaring any degree of satisfaction about the model. It 1s also important to note
that even if we can get a highly detailed and reasonably accurate characterization of the
subsurface parameters, the validation process may still be very difficult. If one tries to obtain a
detailed prediction of some heterogeneous variables such as the groundwater velocity or the
contaminant concentration, it may be impossible to collect enough data to verify whether or not
the predictions are correct. On the other hand, we may be satisfied with reliable descriptions of
larger-scale trends such as averaged velocity or concentration over a specified volume and/or
time interval. Unfortunately, it may be difficult to estimate such trends from the imited numbers
of point measurements, which are typically collected in field experiments (McLaughlin and Luis,
1990).
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A major difficulty has alse been deciding on quantitative criteria on which to base the
decision that there is “agreement” between predicted and measured values {(Voss, 1990).
Furthermore, uncertainties inherent in describing and modeling complex natural systems make it
difficult to discriminate between inadequacies in the conceptual models, mathematical models,
and input data.

Another challenge for mode! validation is the high cost of obtaining data for testing the,
which shouid be considered in designing any validation plan. There is a limit beyond which
increased investment in model validation efforts {both daia collection and analysis) does not
significantly increase confidence in the model and adds litile value to the end user (Sargent,
1990). Therefore, the model validation process requires consent between concerned parties
regarding the level of confidence required for the model 1o be validated, keeping an eye on the
cost that is needed to achieve this confidence level. This type of consent or agreement may be
difficult to attain, as there may be conflict of interests or disagreement on the meaning,
objectives and purposes of model validation amoeng the parties invelved in the process.

3. REVIEW OF TERMINOLOGY AND DEFINITIONS

A first step in developing the validation methodology is to define the meaning intended
for different terms related to model validation and to review previous efforts and sirategies of
model vatidation. Validation, verification, and confirmation are all concepts in terms of
groundwater numerical models that not only do not have established and generally accepted
practices, there is not even widespread agreement on the meaning of the ferms as applied to
models. It is, therefore, important to define the different terms used in the literature and to
illustrate the intended meaning of these terms when used in this report. In addition to these
definitions, we present in this section the different arguments and the debate about the meaning
of the term “validation™ as it applies to groundwater models.

3.1 Models

A model is simply an abstraction or a simple representation of a real system or process.
One can distinguish between three types of models: conceptual, mathematical, and numerical. A
conceptual model can be defined as a hypothesis for how a system or a process cperates and is
quatitative in nature. This operation can then be expressed quantitatively as a mathematical
model. Mathematical models are abstractions that replace objects, forces, and events by
expressions that contain mathematical variables, parameters, and constants {Konikow and
Bredehoeft, 1992). When the mathematical model is implemented via a computer code to
perform the acial model computations, the numerical model for the problem at hand 1s
established.

For predicting groundwater flow and transport at field sites, models have to mclude a
number of components: (1) a conceptual model of flow based on geologic, hydrologic, and
chemical information, (2) a mathematical flow model expressing the processes affecting the flow
system {e.g., recharge, source/sink terms}, (3) a computer code incorporating the mathematical
model of the flow system, (4} a conceptual transport model based on the definition of the
contaminant source, release scenarios, and transport propertics of the subsurface environment,
{5) a mathematical transport model, and (6) a computer transport code for solving the
mathematical transport equations.



One can also distinguish befween “generic models” and “site-specific models.” The
computer codes that are used to solve the mathematical flow and transport equations are referred
to as generic models, whereas after combining them with the conceptual models {model
structure), input data and boundary conditions for a particular geographical area, they become
site-specific models. These site-specific models thus rely on four components to predict flow and
fransport: model structure {concepiual models), initial and boundary conditions, the inpui data,
and the computer code. The inadequacy of any of these items or their nonconformity with the
real system will most likely be an cobstacle to accepting the model as the basis for making
decisions. However, as will be seen later, the adequacy of these items does not necessarily mean
a “valid” prediction.

In terms of their use, models can be classified into two types: research or analysis models
and predictive or decision-making models. Research models are common in studying and
understanding different phenomena in the subsurface and they usually rely on hypothetical
domains or well-characterized field sites. Many of the field experiments that were covered in a
number of international workshops and symposia on model validation (see next section} can be
described as research or analysis models. These models were focused on understanding a number
of transport issues, e.g., matrix diffusion in fractured media and kinetics of sorption in the
fractures and the surrcunding porous blocks. Predictive models, on the other hand, are mainly
used to support and aid a regulatory decision regarding a subsurface contamination issue.
Performance assessment models of high-level nuclear waste repositories, predictive models of
radionuclide transport associated with these repositories and models of nuclear testing sites
belong to the category of predictive models.

3.2 Model Calibration

In the earth sciences, the modeler is commenly faced with the inverse problem: the
distribution of the dependent variable {e.g., head} is the most well-known aspect of the sysiem,
whereas the distribution of the independent variable (e.g., conductivity, porosity) is the least well
known (Oreskes ef al, 1994). Model calibration is the process used to solve this inverse
preblem. That is, model calibration is the process of tuning the model to identify the independent
input parameters by fitting the model results to some field or experimental data, which usually
represent the dependent system parameters. The calibration precess can be quantitatively
described by the goodness of fit. When the model is used for long-term prediction (e.g., 1000s of
vears at underground nuclear testing sites), it is ofien calibrated using shori-term data. This
calibration cannot replace validation, but can only be considered as part of the site
characterization and model formulation process. In some situations, the validation task may
become one of a calibration, whereby experimental data that are collected for the validation
purpose are used during the modeling effort. Although this type of calibration builds some
contfidence in the model results, especially if the calibration fit is good, calibration by itself is not
validation because the input parameters of the medel are found based on the experimental results
that can no longer be considered as validation data (Davis ef al., 1991). Furthermore, a good
calibration of a model does not necessarily imply that the model is valid beyond the values and
conditions of this calibration. Therefore, field or laboratory experiments for model validation
studies should follow the model simulations to ensure that the validation effort is not simply a
calibration effort based on those expenmental results (Davis et al., 1991).

Anderson and Woessner {1992a} point out the need to distinguish between calibration,
verification and validation, while realizing that the three processes are simply tests of model
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accuracy. In their description, calibration is a trial-and-error adjustment of parameters that can be
done manually or using an automated parameter estimation code, whereas model verification is
aimed ai establishing a greater confidence in the model by using a set of calibrated parameter
values and stresses to reproduce a second set of field data. Verification can be used as part of the
modeling protocol for testing the governing equations, the numerical model, and the code.
Konikow (1986} also defines a verified moedel as the model for which the accuracy and
predictive capability have been proven to lie within acceptable telerance using tests independent
of the calibration data. According to Anderson and Woessner (1992a), model calibration and
verification demonstrate that the model can mimic past behavior, whereas model validation tests
whether the medel can predict the future, which they call a predictive validation or postaudit.
They further assert that this type of postaudit should be performed a long time after the inittal
calibration and prediction are made so as to allow the systern represented by the model to evolve
away from the calibrated slate. With a more or less similar view, de Marsily (1990) states that
the calibration and validation of groundwater flow models a1 sites characterized by low
permeability media must take into account that the present observed state of the groundwater
system may be the result of a long iransient history.

3.3 Code Verification

There shculd be a clear distinction between code validation/verification and model
validation. A computer code is said to be certified if the code is properly verified and properly
documenied (Tsang, 1991). Verification of a mathematical model or its computer code is
obtained when it is shown that the model behaves as intended, i.e., that it is a proper
mathematical representation of the conceptual model and that the equations are correcily
encoded and solved (Maloszewski and Zuber, 1992). Tsang (1991) argues that it is illogical to
use the term “code validation,” as “validation” questions the appropriateness of the mathematical
equations and input data and conditions, which are assumed and taken for granted in a code. A
code can only be certified or tested, but not validated. Validation becomes an issue for a model
that is developed to answer a site-specific question.

Taking a more phitosophical view, Oreskes ef al. {1994) define a verified model as one
whose truth has been demonstrated and argue that it is impossible to demonsirate the truth of any
proposition except in closed systerns. They distinguish between mathematical models that may
be verifiable, just as an algorithm within a computer code may be verifiable, and between the
models thai use these mathematical componenis, which are never closed. These models contain
unknown elements that modelers conceptualize based on expert judgment and require input
parameters that are incompletely known. They postulate that verification is only possible in
closed systems i which all the components of the system are established independently and are
known to be correct. They go on to demonstrate that if model results compare unfavorably with
observations, then it can be concluded that something is wrong in the model, but if the
comparison is favorable, a dilemma exists in judging the model. If two or more errors cancel
each other out, there is no way to know that this cancellation has occurred and a faulty model
may be seen as correct. Their bottom line is that 2 good match between predicted and cbserved
output does not verify an open system.

Van der Heijde and Kanzer {1997) address in a great detail the issue of code testing for
groundwater problems. They focus on testing the code functionality and performance using
benchmarking with known, independently derived solutions, intracomparison using different
code functions inciting the same system responses, intercomparison with comparable simulation



codes, and companson with field and laboratory experimentis. Along similar lines, Beljin (1988)
uses three levels of model testing for evaluating solute transport models in two dimensions. The
first level uses analytical solutions to verify the numerical technique and illustrate the behavior
of the numerical solution. The second level includes hypothetical problems and examines such
aspects as the model’s response to aquifer heterogeneiiy, anisofropy, and irregular boundaries.
The last level involves history matching with field data.

Konikow and Bredehoeft (1992) also distinguish between code verification and model
validation. They postulate that the former essentially answers the gquestion: Does the computer
code provide an accurate solution o the governing partial differential equation for various
boundary value problems? This can be demonstrated by showing that the code gives good resulis
for problems having known soluiions, which are very simplified problems. However, afier
adding the different complexities to the code in addressing a certain site-specific problem, the
question becomes how fo prove that the code still gives an accurate solution to the governing
equaticns under these complex conditions, for which no anzalytical solution is available. Konikow
and Bredehoeft’s (1992) answer io this question is that there is no way of assuring such
accuracy, but only checking simple aspects such as mass balance. We agree that this strict
validation perspective is unachievable given our current knowledge and technology levels.

Another set of studies focus on using laboratory experiments to verify certain
mathematical equations or constitutive relationships. As an example, Hassanizadeh {1990a) used
a set of Jaboratory column experiments {o investigate some of the relevant processes in brine
transport in porous media and to provide partial data sets for validating (actually verifying)
different forms of Darcy’s law and Fick’s law for density-driven conditions. In his study, the
experimental (or validation} data were available before selecting the appropriate form of Darcy’s
law and Fick’s law to better describe the experimental data. This is in essence completety
different than the validation process for site-specific, predictive models.

The ASTM guide (ASTM, 1993) also distinguished between application verification (or
site-specific model validationfevaluation) and code verification. The former refers to the process
whereby a model, its computer code, boundary and initial conditions are tested by simulating
independent data from different hydrologic conditions to establish the predictive capability of the
model (Johnson and Weimer, 1996), whereas the latter refers to software testing, comparison
with analyticai solutions, and comparison with other similar codes to demonstrate that the code
represents its underlying mathematical foundation {ASTM, 1993).

So in summary, the term “verification™ should refer to the demonstration of the ability of
a generic mode! {and maybe an analysis tmodel) to solve the goveming equations, whereas
validation shoutd represent the process of post-prediction testing and evaluation of a site-specific
model for the purpose of supporting the decision making that relies on modeling results. When
data are available to split between calibration and “verification,” it is common to call the process
of using the calibrated model to reproduce the “verification” data set a model verification
process. This process is different from the model validation process as it is part of the
development stage of the model, and apparently, the modelers can and do change the model
concepiualization if the calibrated model fails to reproduce the verification data set. Model
validation process comes after the completion of this loop and is aimed at building confidence in
model] predictions that are going to be the basis for decision making.
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3.4 Model Validation

The term validation is featured prominently i the hierature on high-tevel radioactive
waste disposal. Pescatore (1994) reports that there 1s a lack of use of the term validation in the
field of low-level radioactive waste disposal and also, during the firsi half of the last century, in
all technical fields. The first technical appearance dates from the mid-1950s and it was adopted
thereafter in the computer field and elevated to its present siatus following the computer
revolution in the 1970s and early 1980s (Pescatore, 1994). The term validation then started to
appear in some high-ievel waste safety standards in the late 1980s. A large number of definitions
exist for the term “validation” within the performance assessment community, and it has been
used with many different meanings, sometimes in the same report.

Most of the controversy over validation arises from alternative interpretations and
perceplions of the meaning of the term. Interpretations range from an inherently unachievable
“proof of truth” to more pragmatic approaches in waste management with emphasis on the
subjective assessment of whether models are “good enocugh™ for the application at hand
{Zvidema, 1994). Different types of classification or categories for the numerous definitions of
model validation have been presented in the literature. Here, we combine these classifications
and categorize the validation definitions and perspectives into four categories. The following
four subsections summarize the different definitions and the controversy in the literature
regarding the meaning and objectives of model validation.

3.4.1 Scientific Views of Model Validation

The dictionary definition of valid covers 2 wide range of meanings {e.g., strong, having
sufficient strength or force, sound, effective, convincing, fulfilling all necessary conditions,
founded in truth, logically correct, executed with the proper formalities, having such force as to
compel serious atiention). The scientific view of validation usually implies that models are “irue”
representations of reality. The U.S. Nuclear Regulatory Commission (USNRC, 1984) defines
validation as the process of obtaining assurance that a model, as embodied ir a computer code, is
a comrect representaiion of the process or system for which it is intended. DOE (DOE, 1986)
defines validation as a process to ascertain that the code or model reflects the behavior of the real
world. Niederer (1990) argues that three validation types can be invoked: (1) the Popperian (after
Popper, 1968) approach of falsifying wrong theories {more of a philosaphical view), {2) the
positive proef approach, which is partly achieved by showing that the theory (or model) is able
to explain pertinent observations and experimental data, as this ability is a necessary but not
sufficient condition, and {3} the consensus-based approach proposed by Kuhn {1970), who
concludes that proof of a scientific theory largely rests on consensus. For a scientific theory,
consensus-based validation means that acceptance 1s ultimately based on the feeling that the
theory works, a feeling that grows from repeated successful use. In terms of groundwater model
validation, the latfer type calls for providing ample positive evidence for the appropriateness of
the model, which will lead to general consensus that the model is adequate. Niederer (1990)
states “‘consensus is one aspect of scientific truth... However, as far as public acceptance is
concerned, it is the only one that really counts.” Jackson et a/. {1990, 1592) argue that validation
should be different for general models and specific models. That is, for a general model,
validation consists of establishing the case for the model such that the medel is widely accepted
within the scientific community. But for specific models, validation consists of establishing a
case such that one might reasonably expect someone with relevant technical knowiedge would
consider the model acceptable. Jackson et @f (1990, 1992) consider validation to be about
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establishing whether or not the model is an acceptable representation of the physical system and
checking that the model is internally consistent and consistent with principles that are generally
accepted in the scientific community.

Anderson and Woessner's {1992a) approach to wvalidation has a slightly differeni
perspective. They define the strictest form of validation as the demonstration of the model’s
ability to accurately predict the future, which they call a postandit. Later, Woessner and
Anderson (1996) provided a less stringent requirement for accepting groundwater medels and
indicated that this acceptance should be based on confirming observations to support a subjective
judgment. They also emphasized the importance of understanding the role of uncertainty and
accepting it when dealing with groundwater modeling,

The central problem with the language of validation and the sirict definition of model
validation, as seen by Oreskes ef af. (1994}, is that it implies an either/or situation, bul in practice
only a few (if any) are entirely confirmed by observational data, and a few are entirely refuted. In
addition, both terms are affirmative and they encourage the modeler to always claim a positive
result, which is the reason it is impossible to see a sentence tike “the observed data invalidates
our model” in published modeling studies (Oreskes et ai., 1994).

The scientific views of model validation are more suitable, if necessary at all, for theones
and mathematical developments that need to be wvalidated in a strict sense. For numerical
groundwater models that are used to support or guide a decision-making process related 1o a
subsurface problem, these scientific views are essentially neither achievable nor relevant.
Accuracy is not always required for using model results as a basis for decision making. If, for
gxample, one monitors a noncontaminated area as delineated by a model, one would only try to
make sure that the clean area is in fact clean regardless of whether the model accurately predicts
how contaminated the area within the plume is {concentration values).

3.4.2. Philosophical Views of Model Validation

According to Konikow and Bredehoeft (1992), philosophical definitions of validation are
based on two different views. The first of these argues that theories are confirmed or refuted
based on the results of critical experiments designed to verify the theory consequences. The
second philosophical perspective is that as scientists, we can never validate a theory or a
hypothesis but can cnly invalidate it. Popper (1968} states that a model, theory, or hypothesis can
-never be proven to be true, no matter how much corroborative data are presented; they can only
be falsified. Consisteni with the first view, Schlesinger (1979) defines validation as meaning
“substantiation that a computerized model within its domain of applicability possesses a
satisfactory range of accuracy consistent with the intended application of the model.” However,
Konikow and Bredehoeft (1992) believe that many, if not most, present-day scientists who have
considered these issnes find themselves in agreement with the second view. They also add that
groundwater models are subject to improvements via invalidation, but cannot be proven valid
and that validation cannot add to the fund of knowledge.

The philesophical view of model validation articulated by Oreskes ef al. (1994) is that the
term does not denote establishment of truth but rather legitimacy. They define a valid model as
one that does not contain known or detectable flaws and is internally consistent. They, however,
agree with the common view that the establishment of a medel’s ability to “accurately” represent
the actnal processes occurring in the real system is not even a theoretical possibility, Extending
their views, Oreskes et al. {1994} use the term confirmation to account for the fact that a failure
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to reproduce observed data falsifies the model, but the reverse is never the case. By using as
numerous and diverse confirming observations as possible, it is likely reasonable to conclude
that the conceptualization embodied in the model is not flawed. It is important, however, to
recognize that confirming observations do not demonsirate the veracity of a model or a
hypothesis; they only support its probability (Oreskes et af., 1994).

Bredehoeft and Konikow (1993) argue that using the terms “validation” and
“verification” are misleading as they imply the correctness of the groundwater models, which
none of the groundwater modelers would claim. They suggest that the groundwater community
should abandon these terms, and that the term *histery matching”™ used in petroleum engineering
be used instead. This term encompasses the processes of calibration and validation without
connotation of correctness. They, however, caution that care should be taken to predict only for a
time comparable 1o the period that was matiched. McCombie and McKinley {1993} argue againsi
these views and assert that the key problem in the validation issue is to define what level of
accuracy and what degree of confidence must be achieved in the prediction of specific
parameters. The decision about how much effort must go into the validation process before the
model can be considered to be wvalid is necessarily subjective and very dependent on the
complexity of the system and on the objective of using the model in the first place. McCombie
and McKinley {1993) further recommend that the subjective aspect of assessing if a modet is
good enough be included in the term “validation.” de Marsily er al. (1992) present evidence from
their modeling experience as proof that their groundwater model has been validated or at least
proven to be not invalid.

In an attempt to reconcile these two opposing view points, Leijnse and Hassanizadeh
(1994} postulate that Konikow and Bredehoeft (1992) and de Marsily ef al. {(1992) refer to two
slightly different, yet related, definitions of the terms “model” and “validation.” They state that
de Marsily et af. {1992) invoke a weak definition of the word “model,” wherein the mathematical
equations and simplifying assumptions are included but not the input data. On the other hand,
Konikow and Bredehoeft (1992) invoke the strong definiticn of the word “model” where all the
above components are included in addition to the parameier values, boundary conditions, system
geometry, and sources and sinks. Parallel to these definitions, the validation may be viewed iz a
weak sense and in a strong sense. Validation in the weak sense refers to the validity of the
conceptual part of the model {Leijnse and Hassanizadeh, 1994), and is applicable to models that
are used in an analysis mode to analyze a system of inierest and to increase understanding of its
behavior. The strong definition of validation as discussed by these authors implies the validity of
the model of a given system as a whole, including all inpui data, which is related to the
predictive ability of a model in mimicking the right system behavior. When Konikow and
Bredehoeft {1992) say that ‘groundwater models cannot be validated,” they refer to validation in
the strong sense and they have “prediction models’ in mind (Leijnse and Hassanizadeh, 1994).

In Konikow and Bredehoeft’s (1992, 1993} terms, the finding that the model 15 not proven to
be invalid does not mean that it is vaiid. This is true for validation in the strictest sense, but this
author believes that for practical purposes, decision-making purposes, and for moving forward
toward better understanding, the model success at the invalidation attempts means that the model
15 successfully progressing through the process of model validation. The terms suggested by
Konikow and Bredehoeft (1993) are mostly helpful in the model development, building, testing,
and usage stages. If the model is accepted by a regulatory agency, then the process has moved
beyond these terms and the more relevant term is in fact model validation. When it comes o the
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public perception of the term “validation,” the term requires as much effort in explanation as do
terms like “calibration,” “history matching,” and “benchmarking.” For example, to the layman,
the ferm ‘“calibration” gives the same indication of accuracy and comectness as the term
“validation.” Thus, using and explaning the real meaning of the model validation process should
not be any different than using and explaining any alternative term.

Most models, if not all, are not being used to reveal the truth of a system. Of course it would
be great if models could do so, but they simply cannot. Models are in many cases decision-
making tools, When a model successfully passes a rigorous development, calibration, and testing
process, it becomes a reasonable decision-making tool given the limited data used in the
development process. Acknowledging the role of uncertainty, the model-validation process is
one crucial stage in the entire process that should be regarded as an additional filter for
independent model evaluation. The fact is thai most of the literature debate is on the terminology
and not on the process itself. No one argues that the process is unimportani, unneeded, or useless
and no one disagrees on the concepl of using an independent data set to 1est the model. The
disagreement is in what we call it and what the implications are for the term we use.

Other philosophical views were presented more recently in a series of articles edited by
Anderson and Bates (2001) focusing on mode! validation perspectives in hydrological sciences.
For example, Young (2001) states that the views articulated by Konikow and Bredehoeft {1992}
and Oreskes ef al. (1994) are linked in part to questions of semantics: what is the truth? What is
meant by terms such as validation, verification, and confirmation? etc. Young (2001) also
postulates that when models are not proven to be false, they can be considered conditionally
valid in the sense that it can be assumed to represent the best theory of behavior currently
available that has not yet been falsified.

[n an interesting editorial following the above-ciled articles, Bair (1994) presents a
personal experience from the courtroom, where the groundwater model validation issue was the
key element of a 3500 million lawsuit. He was testifying in that trial and was asked to evaluaie
the plaintiffs’ and defendant’s groundwater models, which predicted migration of contaminants
for 17,000 feet and 5,000 feet from the injection point, respectively. During the different phases
of the trial, the plaintif©’s attomey used Bredehoeft and Komikow’s (1993) arguments that
groundwater models cannot be validated, only invalidated. Bair {1994) mentioned that his
response, which was against this argument, was supported by McCombie and McKinley (1993)
and de Marsily et af’s (1992) comments on Bredehoefi and Konikow’s (1993) arguments.
Summarizing Bair’s (1994) conclusions about this experience, it shows how the jury understood
the difference between predictions that are certain beyond reasonable doubt (operational or
confidence-based validity) and predictions that are certain beyond any doubt (strictest form of
validity). The doubts were probably removed from the jury’s mind by the amount of site-specific
data, the small differences between measured and simutated pressures and concentrations, and
the recogniticn that no data were presented that invalidated the defendant’s model. The
reasonableness of a modeling effort can only be supported by a large number of confirming
observations that remove reasonable doubt {Woessner and Anderson, 1996},

The main point one can capture from the above discussion is that we should use as much
data as possible fe try to invalidate 2 model to show that it is either certain or uncertain beyond
reasonable doubt. Reasonable doubt is fundamental to the secientific method, but should not
prevent us from making predictions; it should cause us to gather sufficient data to rigorously test
our models so that we make well-founded predictions (Bair, 1994). For performance assessment
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maodels of nuclear reposiiories, the regulators in both the United States and Sweden require
“reasonable assurance™ that the models comply with regulatory criteria. This concept recognizes
that absclute assurance of compliance is neither possible nor required, but model developers
should provide such information as may be necessary io convince a “reasonable decision-maker”™
that compliance with regulatory criteria would be achieved (Eisenberg ef al., 1994). However, if
such an approach is assumed for validation, there can be no standard answer to the gquestion
“How much validation is enough?”

3.4.3 Operational Views of Model Validation

A nuimber of operational definitions consider validation from a practical and regulatory
perspective. From the practical perspeciive and in the context of groundwater flow models, the
ASTM (1993) and Brown and Laase (1995) define model validation {or application verification)
as the process of using a calibrated model to approximate acceptably & second set of field data
measured under similar hydrologic conditions. Van der Heijde (1990) states that the objective of
mode! validation is 1o determine how well a model’s theoretical foundation and compuier
implementation describe the actual system behavior in terms of the degree of correlation between
mode] calculations and independently derived observations of the cause-and-effect responses of
the actual gronndwater system.

The International Atomic Energy Agency (IAEA, 1982) defines validation to be attained
when a conceptual mode! and iis associated computer code provide a good representation of the
actuai processes occurring in the real system. However, depending on the meaning and strength
of the term “good representation,” this definition may become a scientific one as opposed to a
praciical/operational one. Flavelle (1992) argues that most of the validation definitions available
in the literature make explicit reference to the need to demonstrate that a model is a good,
correct, or sufficient representation of reality and that these definitions require subjective
interpretation but do not recognize the need to measure the accuracy of the model calculations.
He, therefore, adds establishing the accuracy of the model predictions as a second dimension to
the definition of validation. In his argument, Flavelle relies on an npdated validation definition
provided by the [AEA (JAEA, 1988), which describes the requirements for validating a model as
“a model cannot be considered validated until sufficient testing has been performed to ensure an
acceptable level of predictive accuracy. (Note that the acceptable level of accuracy is judgmental
and will vary depending on the specific problem or question to be addressed by the model).”
Borgorinski ef al. (1988) follow the JAEA’s definition that model validation is confirmed when
the model prevides a gocd representation of the actual processes that occur in reality.

It is clear that these operational definitions rely on a subjective component in the
judgment of & model’s validity. However, any evaluation process for model aspects, including
the calibration evaluation, has to rely on subjective judgment. There is no unique way to
structure a process for attaining a reasonable evaluation or guiding the subjective element of the
validation process. Since subjectivity will always be complemented by objective, quantitative
analysis, the balance between the two aspects depends largely on the problem at hand and the
risk associated with making an unacceptable (or bad) judgment. With the significant progress
made dunng the past three decades in regards to the understanding and acceptance of the role
uncertainty piays in groundwater models, it should not be considered a weakness that subjective
Jjudgment and hydrogeelogic expertise are integral components of the entire modeling (including
validation) process.
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Tsang {1991} defines validation as follows: “a model, including the conceptualization and
the code, can be said to be validated with respect to (a) a process or {b) a sife-specific system.”
He argues that one should carry cut model validation with respect to various processes, and at a
certain site, one should identify the relevant processes and the model geometric structure and
carry out the validation of the model (or group of models) with respect to that specific site. Tsang
(1991) further states “it is illogical to refer to a validated model in the generic sense, but it can be
stated that a model is validated with respect to a given process, or a group of models are
validated with respect to a given site.” Voss (1990) describes model validity as the process of
showing that the model is appropriate and adequate for the problem being addressed, is logically
developed using the best available technology, is supported by high quality experimental and
observational data, and that the limitations of the model are well understood.

For performance assessmient of nuclear repositories, McCombie er af. (1990) discuss the
interplay between achieving robust models and validated models. They argue that a model is
determined to be robust when there is confidence that any errors will either have little effect on
performance or be on the conservative side. However, they also emphasize that we should
always aim at achieving the best possible understanding of system behavior and a realistic
modeling of all the important processes invelved. Along similar lines, Zuidema {19%4) and Frick
(1994) suppori the idea that il is not critical that models are stricily correct and inctude all natural
details and processes, but that any uncertainty and simplificaiion results in overestimating the
consequences {conservatism}. It is important to recognize that the conservative assumptions
employed in the modeling process because of lack of data can, at a later stage when more
informaiion is available, be replaced by more realistic representations. The ignored phenomena
are thus marked as *“‘reserve phenomena” and may be included in the model at a later stage
(Zuidema, 1994).

The concept of conservatism and the requirement that models need to go through a
validation process represent fwo processes aimed at assuring the public that decisions made
based on model results will not compromise the public heaith and safety. However, both
processes may not actually change the preconceived public perception about contaminated
groundwater close to residential areas. For example, to a layman living close to a site where
drinking water may pose a health risk, it does not matter how much conservaiism modelers build
into the model. For those living far enough from such a place, again it does not matter that much
what value of risk the contaminated groundwater poses for human health. Thus, the public
perceptien is determined & priori regardless of whether modelers use many conservative
assumptions and whether they use the term “model validation,” “benchmarking,” “history
matching,” etc. The point is that using the term “‘model validation™ will not mislead any of those
highly concemed about the problem at hand. For those who are amenable to independently
evaluating and understanding the modeling process, any used term and the underlying limitations
will have to be adequately simplified and explained.

3.4.4 Confidence-building Views of Model Validation

Davis and Goodrich {1990) identify two acceptance criteria for a given model. The first is
a measure of the adequacy of the model structure (conceptual model, mathematical model) in
describing the system behavior and the second is 2 measure of the accuracy of the model input
parameters relative to experimental resulis and field observations. Along similar lines, Luis and
McLaughlin (1992} postulate that model validation addresses the question of whether or not a
model adequately represents observed phenomena (qualification of the model), whereas accuracy

16

whee )
Sl oa

Y
ety -

“

W,

-
Ak



assessment addresses the larger question of how well a model will perform under conditions that
have not yet been observed. They view model validation {i.e., 2 comparison between model
predictions and observations) as a first step that establishes the ability of the model to explain
observed phenomena. If the model passes a set of reasonable validation criteria that build
confidence in its performance, one can then proceed with an accuracy assessment, which
assumes that structural errors (stemming from conceptual model, mathematical formulation and
computer code) are negligible (Luis and McLaughlin, 1992) or are captured in the overall
unceriainty range. Although concepiual errors will always remain unknown, if the problem is
cast in a stochastic framewerk with uncertainty considered in different parameter values, small
conceptual errors can be considered minor relative o the entire range of uncertainty. However,
for major conceptual errors (e.g., not accounting for matrix diffusion in a fractured system,
neglecting vadose zone processes in a saturated-unsaturated system, etc.} the model will most
likely not pass any rigorous set of tests and evaluations,

Neuman {1992) defines the validation of safety assessment models as the process of
building scientific confidence in the methods used to perform such assessment, and recognizes,
however, that this confidence-building approach to validation is possibly open-ended, as many
iterations between modelers and regulators as may be needed. Eisenberg er al. (1994) support the
idea of confidence building and indicate that this term recognizes that full scientific validation of
models of performance assessment may be impossible and that the acceptance of mathematical
models for reguiatory purposes should be based on appropriate iesting, which will lead to a
reasonable assurance that the results are acceptable. Hassanizadeh {1990b) differentiates between
two types of validation efforts. The first is research (or analysis) model validation and the second
is safety assessment modeting (or predictive modeling) validation. The research model validation
is a tool that helps one understand processes, unceriainties, etc., whereas the safety assessment
modeling validation or predictive validation is a goal that helps the decision-making process.
Sargent {}990) regards validation as a process that consists of performing tests and evaluations
during mode] development to determine whether a model is valid or not. Several models or
versions of a model are usually developed in the modeling process prior to obtaining a
satisfactory valid model. Tests and evaluations are conducted until sufficient confidence is
obtained that a model can be considered valid for its intended application.

In validating a nitrate percolation model, Mummert (1996} indicates that because of
errors in data collection, input parameters, conceptual and parameter uncertainty, it is difficult to
see how any groundwater model can be shown to be completely valid in the strictest sense of the
term. Validation in Mummert (1996) is thus presented as the process of building confidence in
the model rather than determining its absolute correctness or incorrectness.

Both opponents and propenents for the term “validation™ agree that the main concern is
one of adequacy and not correctness. That is, the main concern is always whether or not the
model is adequate for its intended use and whether or not there is sufficient evidence that the
model development followed logical and scientific approaches and did not fail te account for
important features and processes. Also, it should be noted that determining the adequacy of a
model or building confidence in its prediction is not a one-time exercise. It is an iterative process
that should be viewed as part of an integral icop with trigger mechanisms or decision points that
force the process back to the characterization-conceptualization-building-calibration-prediction
loop if the model adequacy tests {or model validation process) indicate the need to do so.
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3.5 Model Inadequacy

There are two main reasons for the failure of a model to adeguately represent a physical
system: 1} the general physical laws underlying the model may be inappropriate for the problem
at hand (e.g., using a porous medium assumption for a fractured system where matrix diffusion is
a strong phenomenon}, or 2) the representation of parameters in the model are inappropriate
(e.g., ignoring spatial variability). It is important to re-evaluate the model and try to identify the
sources of the mismatch between observed and predicted system behaviors. This is important as
it helps isolate the possible sources of error and quantify the contribution of each source to the
total error or mismatch, Three general sources of errors can exist: errors in the concepiual model
itself, numerical errors arising from the solution of the mathematical equations, and errors arising
from the uncertainties in the input parameters. Tsang (1994) adds the possibility that the field
data used in validation may not be representative of the real system that is being modeled. No
matter how sophisticated the modeling approach is, when applied to a subsurface flow and
transport problem, it provides no more than a simplistic representation of very complex field
conditions. In this regard, Konikow (1986) states that models should be considered as dynamic
representations of nature, subject to further refinements and improvements. As new data become
available (e.g., through new wells), model predictions can be evaluated, validated or invalidated,
and then modified if necessary.

3.6 Discussion

The above definitions cover a wide scope of different views on groundwater medel
validation. Neveniheless, many of these definitions focus on providing evidence that the model
under consideration is adequate for its intended use. We postulate that medel validairon is a long-
term, iterative process aimed at building confidence in the model as a whole and with trigger
mechanisms that drive the process back to the beginning if major deficiencies are found. Key to
this process is the use of a diverse set of tests that should be designed to evaluate a diverse set of
aspects related to the model.

Overall, there is a general agreement between different definitions of validation, which is
centered around the fact that absolute proof that models are perfect representations of reality is
usually not required. Adequate representation of reality is what most of the validation definitions
focus on. However, a subjective judgment will eventually answer the subsequent question of
“how adeguate is adequate?” Davis ef af. {1991) mention that the determination of the model
adequacy sheuld consider the types of validation tests, the number of validation tests, the degree
of agreement between model and the validation tests and the conformity between model
descriptions and site-specific information. They emphasize the necessity for rigorous
development of the validation process and the importance of providing regulators with validation
information that is as inclusive as possible and follows a logical systematic approach.

An important point here is that the tests of model predictions should be suitable for the
regulatory purpose of undertaking the modeling exercise in the first place. That 1s o say that the
validation tests should not be focused on whether the model is scientifically correct for all
conditions, but rather on the adequacy of the model for the intended regulatory purpese. For
example, a transport model predicting the spatial-temporal disiribution of contaminani
concentrations can be impossible to validate in terms of matching measured and predicted
concentrations, but can be validated or invalidated from a regulatory perspective {e.g., whether
or not the plume will reach a certain compliance boundary within a certain time frame). In this
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case, the model validation exercise should be tailored to this purpose. That is, if the model
predicts that the plume will not reach that boundary, experimental evidence is needed to support
that prediction regardless of the mismatch between predicted concentrations and field-measured
concentrations. What is irnportant in this case is whether any field evidence indicates faster {or
slower} transport rates, thus earlier or later mass amrival, than predicied.

It is clear that often-quoted statements such as “groundwater models cannot be validated”
and “groundwater models can only be invalidated” (Konikow and Bredehoeft 1992, 1993;
Bredehoeft and Konikow 1992, 1993) refer to validation in cnly the strictest sense, responding to
a concern that the layman’s possible misconceptions are of predeminant importance.
Unfortunately, such statements may lead ito a laid-back attitude on the part of researchers,
consuliants, and even regulatory agencies when it comes 1o evaluating mode! predictions. With
the perception that no matter what we do, the groundwater model will never be validated,
temptations are high that good mode! development, building, and calibration are the end of the
story and nothing can be done more than a moniioring well placed downstream, even though the
downstream direction itself may need to be validated. All groundwater modelers agree that their
models cannot be validated in the strictest sense {at least with present-day techmology), but
similarly agree on the importance of post-prediction testing and evaluation. By expanding our
definition of validation to encompass a long-term process of confidence building, modelers and
model users can develop rigorous validation processes that will ultimately improve model quality
and the quality of decisions based on models.

With the state of current knowledge and technology, we believe that the operational and
confidence-building definitions of model validation are more amenable 1o implemeniation and
practicability, especially when predictions are obtained for thousands of years into the future.
The definitions essentially lead t0 an iterative process that is aimed at adjusting model
conceptualization, structure, and input as new data become available in such a way that reduces
prediction uncertainty and builds confidence in the model results. Furthermore, when there are
insufficient data to split between calibration and shori-term validation, one has to answer the
regulatory concern based on model resuits and a limited number of field activities that should be
carefully designed in light of the understanding of the system behavior provided by the model
and available data.

4. REVIEW OF GROUNDWATER MODEL VALIDATION STUDIES

Research on model validation is extensively reported in the literature, but unfortunately
does not provide a quantitative approach or outline a step-by-step procedure for achieving any
type of model validation. In this section, we review some of the major studies, international
conferences, projects, and symposia that were mainly devoted to address the issue of subsurface
model validation. In the area of toxic waste management, a number of authors (e.g., Moran and
Mezgar, 1982; Huyakom et af., 1984; van der Heijde et af., 1985; van der Heijde, 1987; Beljin,
1988) have considered the question of whether a model used in a safety assessment program is
valid in making appropriate long-ferm predictions. In addition, during the late 1980s, an effort
was made to establish a groundwater research data center for the validation of subsurface flow
and transport models (Miller and van der Heijde, 1988; van der Hesjde ef af., 1989).

In the area of nuclear waste management, the need to validate groundwater models has
received increased emphasis. This has led to institutionalized and publicized programs for
validation of hydrogeological models. A number of international cooperative projects such as
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INTRACOIN (1984, 1986), HYDROCOIN (Grundfelt, 1987; Grundfelt ef al, 1990),
INTRAVAL (Andersson ef al, 1989; Nicholson, 1990), STRIPA (Herbert et al, 1990},
CHEMVAL (Broyd et a@l, 1990), BIOMOVS (881, 1990) were deveted to the validation of
models. Model validation was also extensively discussed in symposia including GEOVALS?
{1987, GEOVAL9(} {1990) and GEOVAL94 (1994). The journal Advances in Water Resources
dedicated two special issues to the topic of model vahidation (AWR, 1992a, b}. Additionally, a
wealth of literature has been published on wvalidation in the field of systems engineering and
operations research {Tsang, 1991}, some of which may be useful for subsurface model
validation. Examples cited by Tsang (1991} include Balci {1988, 1989}, Balci and Sargent (1981,
1982, 1984), Gass (1983), Gass and Thompson {1980}, Oren {1981), Sargent (1984, 1988),
Schruben {1980), and Zeigler (1976).

The Swedish Nuclear Power Inspectorate, SKI, initiated and completed three
international cooperation projects to increase the understanding and credibility of models
describing groundwater flow and radionuclide transport. The INTRACOIN project is the first of
these, and it focused on verification and validation of transport models. The HYDROCOIN study
was the second siudy and represented an international cooperative project for testing
groundwater-modeling strategies for performance assessment of nuclear waste disposal. The SKI
initiated the study in 1984, and the technical work was finalized in 1987 (Swedish Nuclear
Power Inspectorate, 1987). The participating organizations were regulatory authorities as well as
implementing organizations in 10 countries. The study was devoted to testing of groundwater
flow models and was performed at three levels: computer code verification, model validation,
and sensitivity/uncertainty analysis.

Based upon lessons learned from INTRACOIN and HYDROCOIN, international
comnsensus grew prior to and during the GEOVAL Symposium in Stockholm in April 1987 to
begin a new project dealing with validation of geosphere transport models. This new
international cooperative project, named INTRAVAL, began in October 1987. As with the
preceding projects, INTRAV AL was organized and managed by the SKI. The project proposal
was based upon a technical proposal developed by an international ad-hoc group from eight
selected nuclear waste programs and institutes (Nicholson, 1990).

The INTRAV AL project was established to evaluate the validity of mathematical models
for predicting the potential transport of radioactive substances in the geosphere (Swedish Nuclear
Power Inspectorate, 1990). The unigue aspect of INTRAVAL was the interaction between the
experimentalists and modelers simulating the selected test cases for examining model] validation
issues. The test cases selected consisted of laboratory and field transport experiments and natural
analogue studies that incorporate hydrogeclogic and geochemical processes relevant to safety
assessments of radioactive waste repositories.

These international projects and symposia focused on qualitative aspects of model
validation. Very few, if any, touched on quantitative issues. In addition, some of the studies
focused on validating a single aspect or observed phenomenon (e.g., matrix diffusion}, and none
addressed how to validate a predictive, long-term model in a quantitative manner. In the next
section, we review some of the studies that tried to evaluate the reliability of predictive models
(mostly flow models) that were used for refatively short-term predictions.
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4.1 Predictive Reliability and Postaudit

A number of studies have explored the predictive reliability of reasonably calibrated
models by a posterior comparison between model predictions and observed data {e.g., Person and
Konikow, 1986; Konikow, 1986; Freyberg, 1988). These studies showed that prediction
accuracy was moderate. However, the common situation in these studies was that the calibrated
model was used to predict system behavior under modified conditions {future predicted system
stresses, modified boundary conditions, or different parameter values). In particular, Freyberg
{1988) showed that the ability of a calibrated parameter set of a groundwater flow model to
reproduce observed data was not an indicator of the ability of that parameter set to predict system
response under modified conditions. He reports that good calibration does not necessarily
guarantee equaily good prediction. Person and Kontkow (1986) and Konikow (1986) recalibrated
a groundwater flow and solute transport model of an irrigated stream-aquifer system because of
the discrepancies between prior predictions of groundwater salinity and observed cutcome. They
found that the calibration period {covering some seasonal variations in the river-aquifer
interaction and irrigation cycles) needed for accuraie transport prediction is lenger than that
required for the flow mode! prediciions. The metric used to judge the prediction accuracy of the
model was the spatiaily averaged proundwater tevel for the flow model and the spatially
averaged groundwater salinity for the solute transport model.

A model postaudit is defined as a comparison of a model’s predictions to the actual
conditions of an aquifer as a result of the change in conditions (Brown, 1996}. Then, “if the
model’s prediction was accurate, the model is validated for that particular site {Anderson and
Woessner 1992b, p. 9).” Anderson and Woessner (1992a) reviewed five postaudits of modeling
studies in which the models did not accurately predict the future behavior of the modeled system.
These five studies include the studies by Konikow (1986) and Person and Konikow {1986) that
we discussed earlier. The other three studies are summarized here. Alley and Emery (1986)
examined predictions of 1982 water-level declines and stream flow depletions for the Blue River
Basin, Nebraska, made in 1965 using an electric analog model. The postaudit showed that the
mode] underestimated the depletion of the sitream flow and overestimated the decline of the
groundwater levels. Reanalyzing the modei structure, Alley and Emery {1986) concluded that the
error in the prediction was a result of uncertanty in the conceptual model of the Blue River
Basin.

The next study reviewed by Anderson and Woessner {1992a) is a postaudit study (Lewis
and Goldstein, 1982} of a two-dimensional groundwater flow and solute transport medel that was
developed and calibrated by Robertson (1974). The flow model was calibrated to an assumed
steady-state flow field and the transport mode! was calibrated tc observed concentrations of
chloride in groundwater in 1958 and 1969. Robertson (1574) then used the calibrated model 1o
predict chloride and tritium concentrations in 1980. Through the postaudit study, Lewis and
Goldstein {1982) found that the contaminant plumes predicted by the model extended farther
down gradient than the actual plumes and attributed this deviation to the conservative worst-case
assumptions in the model input, the simplicity of the conceptual model, and the inaccurate
estimate of subsequent waste discharge and aquifer recharge conditions. The original model of
Robertson {1974) viewed the aquifer as a continuous porous medium, and it is likely that the
flow in this aguifer would be better approximated using a dual-porosity model that includes
fracture flow as well as matrix diffusion (Anderson and Woessner, 1992a).
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The final postaudit study reviewed by Anderson and Woessner (1992a) is the study of
Flavelle et af. (1991) that simulates the release of hydrogen ions from a tailings pile situated in
glaciofluvial deposits in Ontario, Canada. The flow model of that study was calibrated to
measured heads in 1989 within the inner part of the plume where pH was less than 4.8. The
solute transport mode!l was calibrated by matching plume position to observed position in 1983
and 1984 through varying the distribution coefficient. The calibraied model was then used to
predict the plume distribution in 1989. Data collected in 1989 showed that the model accurately
predicted the pH values in the inner core of the plume but not at the outer edges. Flavelle ef al.
{1991} concluded that even though their site is one of the most thoronghty studied uranium
tailings sites in Canada, the data were not complete encugh for a successful model validation.

Weaver ef al. (1996) performed a postaudit on two groundwater flow models that were
used to design a well array for a groundwater capture and containmemn system installed along the
boundary of a manufacturing facility. The first model was an analytical model for which the
postaudit indicated that the performance of the initial sysiem design provided by this medel did
not meet expectations. This led to using a numerical model to design an enhanced system, for
which a detailed postaudit could not be performed, as the system was in place for a short period
of time. However, a cursory review of the numerical model results versus observed conditions
was performed. The results of the postaudit indicated that the deviations of models’ predictions
from actual water levels could be mainly atiributed to changes in system conditions (pumping
rates, variations in well efficiencies, and limitations on total available drawdown) and aquifer
heterogeneity.

An interesting discussion related to the postaudit concept is presented by Brown (1996).
The previous studies al! focused on evaluating the model and conducting the postandit long after
the model had been accepted and used for decision making. So, although the postandit may
enable the modeler to improve the model and benefit from the knowledge gained by the new
field data, the improvement can only take place after actions have been taken that were based
upon the prediction. Therefore, the postaudit is not something that helps a model withstand
attermpts at invalidation prior to decision making (Brown, 1996}. An alternative to this type of
model postaudit is the field postaudit that can be performed after the prediction but before the
final decision is made based on the prediction. If some test of a modeling prediction is required
prior to decision making, a field audit will provide information of a direct and relevant nature to
evaluate the adequacy of a model’s prediction. This type of evaluation is what model sponsors
and regulators usually call model validation.

4.2 Review of Proposed Validation Strategies

In the context of performance assessment of high-level radioactive waste repositories,
Davis and Goodrich (1990) and Davis et al (1991) propose a strategy that focuses on
demonstration of model adequacy in representing the real system, given pertinent regulatory
requirements, rather than on proving absolute correctness of the model from the purely scientific
point of view. In proposing this strategy, Davis et al. (1991) take mnto account the following
seven issues: (1) models of performance assessment can never be validated, {Z) validation is
aimed at building confidence in the model rather than providing a “validated model,” (3) model
validation implies comparison tc reality, but compliance with the scope of regulatory
requirements is the overall objective, (4) comparisons io reality shoutd consist of comparing the
model results to laboratory and field experiments, natural analogues, and site-specific
information, (5) these comparisons will only answer the null hypothesis that the model is invalid,
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with the rejection of this hypothesis building confidence inio the maodel, (6} the validation
process should consider ail plansible conceptual modets, and (7) in comparing mode! predictions
to experimental data, a distinction should be made between testing the model siructure and
testing model input.

The proposed strategy in the above mentioned two studies consists of ien steps: (1) define
a validation issue, (2) develop a conceptual model or models, (3) develop a mathematical model,
{(4) identify andfor design an experiment that addresses the wvalidation issue, (5) define
performance measures to be used for model comparisons, (6) quantify the uncertainty associated
with the input data and the data available for comparison with the model cutput, (7) define the
acceptance criteria or acceptable model error based on regulatory requirements and data
uncertainty, (8) simulate the experiment, {%) perform the experiment in the laboratory or field,
and (10) evaluate model results based on the acceptance criteria.

For validating transporlt models for use in repository performance assessment, Jackson et
al. (1990, 1992) propose a methodology that includes the following 12 steps: (1) review models,
{2) review data, (3) calibraie a specific model, (4) define accepiability of the model with regard
to its intended purpose, (5) predict and test, {6) compare with alternative models, (7) anatyze
discrepancies, {8) assess parameters, {9) present study for review, (10} consider implications,
{11} suggest improved experiments, and (12} review consistency.

Along similar lines, Tsang (1987) pointed out the need to differentiate between model
siructure (geomefric structure, geologic units, heterogeneity, etc.) and model processes
{dispersion, advection, matrix diffusion, colloidal transport, etc.). He indicates that failure in
matching modeling results with field data could be due to errors in the ideniified mode}
processes and/or model structure. Furthermore, Tsang (1987) makes the distinction that model
processes can be validated generically, bui model structure validation is a site-specific task.
Similarly, Ababou ef al. (1992} distinguish between iesting procedures aimed at checking the
internal consistency of compiex numerical models and ‘groundtruth’ experiments, which aim at
overall assessment of the model applied to a particular field site. In addition to validating mode}
structure and model processes, Tsang {1987) also proposes the urgent need to validate the
procedures for processes and structure identification and the procedures for simplification and
conceptualization. Tsang (1989, 1991) reports the need to validate every step of the modeling
process in an iterative manner for models that are used for long-term: predictions with emphasis
on adding an element to the modeling process that can be used to suggest what further
measurements are needed to improve the confidence level in the model predictions {e.g., Data
Decision Analysis, Pohll and Mihevc [2000]). Tsang (1991) also emphasizes the need for
advancing scientific knowledge in related fields, for multiple assessment groups independently
studying the same site, and for presenting the modeling efforts in open literature for public
scrutiny and evaiuation by the scientific community.

Voss (1990} divides the methodology developed for use within the DOE Civilian
Radioactive Waste Management Program into the following three general stages: (1) maintaining
a record of model development, (2) performing laboratory and field investigations to critically
test the model and its premises (e.g., theories, hypotheses, submodels), and (3) carrying out a
sequence of formal technical reviews by scientific experts. Voss (1990) also focuses on the
importance of approval by the international scientific community regarding model development
and model validation. This is to be achieved through comments on reports published in peer-
reviewed journals. Voss (1990) also quotes from Kuhn (1982) that publishing the results of
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theoretical predictions and measurements in professionally accepied text (textbooks in particular)
is in itself establishing reasonable agreement:

“It follows that what scientists seek in numerical tables is not usually ‘agreement’ at all,
but what they often call ‘reasonable agreement,” Furthermore, if we now ask for a criterion of
‘reasonable agreement,” we are literally forced to look in the tables themselves. Scientific
practice exhibits no consistently applied or consistently applicable external criterion.
’Reasonable agreement’ varies from one part of science to another, and within any part of
science it varies with time...I now conclude that the only possible criterion is the mere fact that
they appear, together with the theory from which they are derived, in a professionally accepted
text.”

Flavelle (1992) proposes a methodology that focuses on the quantitative evaluation of
mode! accuracy when calibrating and validating a model. The method includes performing a
regression analysis of predicted values and measured data with the regression coefficient of the
regression line inferpreted as an empirical indicator of model bias and the standard error
interpreted as the uncertainty in the validation. This inlerpretation provides an initial evaluation
of the validaiion results and the basis for decisions abeut the usefulness of the model and about
the need for more detailed analysis of the validation data. In addition to the simplicity and wide
understanding implicit in this analysis, Flavelle (1992} indicates that the approach has the
advantage that the validation and calibration statistics can be compared to ascertain if there has
been a change in the conditions being simulated, implying that the model does not adequately
account for all the important processes,

A linear regression of calculated against measured daia provides an initial method io
evaluate empirically the quality of the data fit (Falvelle, 1992). Bias in the model and uncertainty
in the input and measured data would be expecied to affect both the slope of the regression line
and the standard error of the regression. Based on this linear regression, one needs to statistically
test the assertion that the slope of the regression line is unity and that the intercept of the line is
zero. Hypothesis testing can be used for this purpose with the null hypothesis for the slope being
Hy: slope = 1, and the alternate hypothesis is H; slope # 1. The test statistic is ((slope-1) +
standard deviatton of the slope). This is to be compared to the critical value of the ¢-distribution
at (n - 2) degrees of freedom (# 1s the number of data points) and {1 - 0 5a)at the & level of
significance, #(n — 2,1 —0-5a) (Falvelle, 1992). If the absolute value of the test statistic exceeds
the critical value, the null hypothesis is rejected. In a similar manner, the nult hypothesis of 3
zero intercept can be examined. Failing to reject both null hypotheses does not mean the model is
free of biases, only that this analysis fails to identify any bias (Flavelle, 1992).

Davis and Goodrich {1990) suggested that the deviations of the calculated values from
the observations should be examined for trends to identify model bias. The deviations between
catculated and observed values correspond to the deviation of observed versus predicted data
points from the 45° line on the linear plot. Trends in the set of deviations are what cause the
slope of a regression line to vary from unity. Regression analysis has a compelling advantage
over analysis of the deviations, as it has been shown that the assumption that the regression
residuals are normally distributed is not unreasonable (Draper and Smith, 1981), while the
deviations between calculated and observed data may not be normally distributed. Statistical
analysis of non-normally distributed data usnally requires non-parametric statistical tests, which
are more complex than parametric tests used for normally distributed data (Flavelle, 1992).
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Luis and McLaughtin (1992} propose a stochastic approach to mode! validation and apply
this approach fo a two-dimensional, deterministic, vnsaturated flow model for predicting
moisture movement during a field experiment carried out near Las Cruces, New Mexico. The
model they tried to validate was based on using effective parameter values that were obtained
from a large number of soil samples collected before the infiliration experiment at the site. They
assume that the model objective was to predict the mean distribution of moisture content over
time and space, and postulate that this distribution describes the large-scale flow behavior of
most interest in practical applications. The other assumption of their study is that the
observations made for the purpose of model validation are small-scale observations collected at
sparse points in space and over time.

Luis and McLaughlin (1992) postulate that the differences between predicted and
measured moisture content can be aitributed to three error sources: (1) measurement errors,
which represent the difference between the true values and the smalt-scale values of moisture
content, {2) spatia! heterogeneily, which represents the difference between the large-scale trend
that the model is intended to predict and the true small-scale values, and (3) model error, which
represents the difference between the model prediction and the actual large-scale trend. By
expressing measurement residuals in terms of these three components, Luis and McLaughlin
{1592) use perturbation analysis and derive the relationship between the measurement residual
variance, the actual moisture content variance and the measurement error variance that is only
related to the measuring device. This relationship holds only under the assumpiion that model
errors are negligible, and once developed, it can be vsed to develop statistical tests, which check
the hypothesis that the model error is indeed negligible.

Luis and McLaughlin {1992} then applied this approach to the well-instrumented Las
Cruces infiltration experiment mentioned earlier. They tried to validaie a two-dimensicnal,
numerical model that describes soil properties at the site by a set of spatially uniform effective
moisture retention and log hydraulic conductivity parameters, which are inferred from a large set
of soil samples collected before the expeniment was conducied. The validation approach
indicated that this model was able to predict the behavior of the moisture plume at time scales of
two years and space scaltes of 20 meters, but it was not clear that the model would be able to
work equally well over longer temporal and spatial scales. The details of this approach are
presented in Appendix E and we propose to adapt and use this approach for the current validation
plan.

Although this approach provides a guantitative measure to model validation through
hypothesis testing, Luis and McLaughlin (1592} caution that this approach should not be blindly
applied. In their application to the Las Cruces experiment, which has an unusually extensive set
of soil data and validation measurements collected over horizontal and vertical distances of
several meters and over time scales of a few years, they could not reach to a conclusion
regarding the ability of the model to predict the observed moisture content at later times. In
addition, Ababou et al. (1992) assert that this approach, although very valuable, is not quite
complete since the hypothesis that the model is false remains untested, and the probability of
accepiing a false model cannot be evaluated by this technique {Chapman ef af., 1994). To do this,
one would need to postulate another ‘complementary’ model, or class of models, known o be
always true if the model being tested is false. To define and implement such compiementary
models i an exhaustive fashion is quite a difficuit task in the case of spatially distributed
phenomena {Ababou ef al., 1992).
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Mummert {1996} used two validation approaches to evaluate a nitrate percolation model.
The first validaiion methed used is a point validation method, where the model accuracy for
point predictions is assessed by calculating the coefficient of determination, relative emror and
standard error. The second validation method used is the statistical validation, whereby Monte
Carlo simulations are used to obtain distributions of mode! predictions. The hypothesis that field
data represent “reasonable™ samples from the distribution of model predictions is tested by
checking whether observed values hie within the five and the 95 percent guantiles of the
distribution.

In Appendix VI of the Federal Facilities Agreement and Consent Order (FFACO, 2000}
for the underground test area {(UGTA) at the Nevada Test Site {NTS), the mode! validation
precess has a more general and encompassing definition. The ten steps constituting this process
are: 1) establishment of the model purpose, 2} development of conceptual madel, 3) selection of
a compuier code, 4) model design, 5) modej calibration, 6) sensifivity and uncertainty analyses,
7) model verification, 8) predictive simulations, 9) presentation of model results, and 10}
postaudit. This definition implies that to be validated, a model has to go through the entire ten
steps using scientifically and technically sound approaches as appropriate for each siep.
Referring back to the discussion in Section 3.3 on the difference between code verification,
medel verification and model validation, one can see that the ten-step strategy 1s better termed as
“overall modeling strategy.”

What is not clear in the above UGTA strategy is how the five-year proof-of-concept, also
prescribed by the FFACO (2000), fits into this ten-step model validation strategy. Also, the
details of the postaudit stage and the criteria that govern the pass-fail decisicn are not obvious.
We believe that the proposed validation strategy provides a forum and a structured, systematic
approach for making this decision. Therefore, for the CNTA model, the proposed validation
strategy can essentially be used to achieve the objectives of step 10 (postaudit) of the UGTA
strategy as well as the proof-of-concepi analysis through the linkage between validation and
long-term monitoring network design. Once the modej passes this validation/posiauditi stage, the
process moves to one of long-term monitoring and stewardship. In these steps, one would use the
“final” refined and validated model and predict the output of regulatory interest as well as the
output that will drive the long-term monitoring network design. More discussion about the link
between the model validation strategy proposed here and the UGTA strategy is presented in
Section 6.1.

4.3 Performance Measures, Uncertainty and Acceptance Criteria

The performance measure or the model-produced guantity of interest should be related to
a quantity of regulatory interest (Davis et af., 1991). However, regulatory interest in the context
of performance assessment models and models of nuclear testing sites usually spans a time scale
on the order of 1,000s of vears and spatial scales on the order of kilometers. Since experimental
analysis designed for modet validation studies cannot be extended to these scales, the validation
studies must rely on indirect measures for testing the model prediction. This issue raises an
important question regarding the extrapolation of model “validity” across multiple time scales.
That is, can a model validated (or being declared as not invalid) at certain time {e.g., 50 years
after contaminant release) be assumed valid over a time scale of 1,000 years? This issue
advocates the importance of long-term monitoring to make sure that model predictions continue
to be not invalid as time progresses, which builds increased confidence in model predictions.
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While groundwater models cannot be tested over the regulatory scales of interest, certain
site-specific factors can be evaluated to gain confidence in using the model to predict flow and
transport over these scales. The site-specific data should be used not only as model input data
{e.g., hydraulic conductivity), but also as model testing or validation data (e.g., hydraulic heads).
Also, a considerable effort should be devoted to justifying the model assumptions as mentioned
earlier. Assumptions that cannot be tested or justified by site-specific information have to be
tested according to the expert judgment and the acceptance by the scientific community.
Anderson and Woessner (1992a} also state that a subjective judgment (based on hydrogeologic
expertise and evidence) is always required in deciding whether the mismatch between model
predictions and field data is tolerable and that these judgments shouid be tied to the regulatory
purpose of the modeling effort.

Tsang {1987) highlights the importance of the choice of the measurable guantities that are
to be used for validation purposes, as there are measurable guantities that are almost impossible
to use for model validation (e.g., point and instantaneous concentraiion data). The averaged
solute concentration over a large region and over a period of time 1s a more relevant quantity for
certain purposes such as determining the effectiveness of geological isolation of nuclear or toxic
waste (Tsang, 1987). However, depending on the purpose of the model, this comparison may or
may not be of importance. Also, more rigorous criteria for upscaling of point concentration or
downscaling of model-predicied concentration should be inveked when making such
comparisons. Again, this comparison may actually be avoided if one is to enly confirm where the
plume is, or to evaluate amival times. Furthermore, the stochastic models provide uncertainty
bounds around the best estimate, and field measurements that are properly upscaled can be
compared to see whether they fall within or far beyond these uncertainiy bounds.

Most of the model components {conceptual model, mathematical model, computer code,
and input data) contain some degree of uncertainty due to tack of perfect knowledge about the
subsurface conditions no matter how well the system is characterized. Furthermore, experimental
results (e.g., field measurements) that are designed for model validation studies contain some
errors or uncertainty, The validation tests should consider these sources of uncertainty, which
apparently makes it difficult to ascertain whether or not the model resuits agree with the
experimental data; the more uncertain the data are, the more difficuit it is to conclude that the
model is acceptable (Davis ef af., 1991). However, as mentioned before, these uncertainty effects
should be viewed in terms of whether or not they affect the quantity of regulatory interesi. In
some cases, input uncertainty may have minor impact on the resulting regulatory quantity such
as the size and location of the water volume having contaminant concentration exceeding a
cerfain threshold (Pohll and Miheve 2000). These effects should therefore be carefully studied
prior to designing the validation study.

Davis et af (1991) discuss some acceptance criteria when validating performance
assessment models. To declare that a model is acceptable or adequate for a specific regulatory
requirement, the model structure, as well as the model input data, has to be acceptable. Model
structure should reflect how the real system behaves. All assumptions inherent in the conceptual
mode! should be justified using site-specific information and field data collected for validation
purposes. Accepting the model structure implies that the model results will exhibit a system
behavior that is independent of the input data used. That is to say that changing the input data for
a structurally accepted model only changes the outiput results in a quantitative sense but not in a
qualitative sense.
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To deciare that the model input is adequate one has to build confidence in the model over
a wide range of experimental conditions. That is, by changing the conditions under which the
laboratory or field validation experiment is performed {e.g., different flow or pumping rates), the
model predictions can be compared to a wide range of input conditions that will help build
confidence in model input. When changing experimental conditions and thus some portions of
the input data for the model, the adequate model should predict the experimental results with a
reascnable accuracy without changing other input data. If other inpui data are correlated to those
changing conditions, then the mode! input should reflect this type of correlation to accept the
model input and declare the model not invalid.

5. CONSIDERATIONS AND CRITICAL ISSUES
5.1 Reducing the Prediction Uncertainty

Validation of predictive models should provide confidence in the uncertainty band of the
resuits, within which the real ouicome will fall (Zuidema, 1994). Understanding the impossibility
of completely eliminating uncertainty {Gorokhovski and Nute, 1996), we should develop ways of
making groundwater models and the decisions based on them more reliable and effective. The
preposed plan focuses on making use of collected validation data to reduce mode! uncertainty
and narrow the range of possible outcomes of stochastic numerical models. This requires
iterative implementation of data collection, model evaluation, mode! refinement, and uncertainty
reduction and {s particuiarly important in radionuclide transport models as only small aspects of
the transport model results can be tested. In this case, our proposed validation approach would
focus on the non-transport elements of the mode! (e.g., geology, structure, and flow) and use the
validation data to refine transport predictions and reduce their uncertainty.

As pointed out by Anderson and Woessner {1992a), a partial validation may be achieved
by the demonstration that a good modeling protocol is implemented in the modeling process and
by a thorough assessment of model calibration and uncertainty analysis. The use of validation
data to reduce prediction uncertainty is thus an imporiant step in the validation stage where
refining the model with new data helps build increased confidence in the model. This triai-and-
error approach together with the understanding that uncertainty cannot be completely eliminated
represents important aspects of the validation approach and should be clearly presented to model
sponsors and regulators for their understanding and approval.

5.2 Diversity of Data and Evalunation Tests

As discussed by Ababou er al. (1992), the degree to which a single experiment (or a
single set of field data) can validate a model depends on the subjective weights, or probability,
assigned to that particular experiment. More validation weight can be assigned if the range of
aspects covered by the experimental data set is broad enough that the overall character of the
model is efficiently put fo test. The ficld data should, therefore, be diverse and cover different
aspects of the model. For example, the data should be able to test geologic aspects (e.g., the
existence and location of contact between different geologic units), flow model aspecis (e.g.,
head and gradient measuremenis), and firansport or contaminant release aspects (e.g.,
conceniration measurements). Since one of the purpeses of the validation task, if not the most
important one, is to see if muitiple failure and far-field transport of contaminants can at all take
place, transport aspects related to some failure scenarios should be tested.

Oreskes et al. (1994) postulate that by using as numerons and diverse confirming
observations as possible, it is reasonable to conclude that the conceptualization emboedied in the
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model is not flawed. Therefore, a diversified set of statistical tests and evaluations for the model
will provide a structured approach for evaluating the model predictions and building confidence
in the decisions based on these predictions. The systematic validation approach we propose here
relies on a number of different tests and evaluation technigues that will help guide the decision
regarding the model predictions and allow for informed and grounded discussions among the
modelers, model sponsors and regulators.

5.3 Submodels

In general, if a single model is divided into two or more submodels, the degree of
confidence imparted by evaluating the submodels individualiy will not be as greai as the degree
of confidence achieved by evalnating the submodels linked together (Eisenberg et af., 1994).
Therefore, it is important to perform additional tests to validate the combined submodels. Site-
specific groundwater flow and transport models can be divided in general into three submodels
that can be tested individually first and then combined. Figure 1 shows an example of the
different submodels of a site-specific model and how they are linked to each other. The figure
shows both the conceptual and the numerical submodels.

For the first submodel, a geologic model identifying the different units and how they are
structured together within the study domain is concepiualized. The input to the first submodet
constitutes all the data types that help identify the geologic units and where they are located (e.g.,
lithologic data, geophysical logs, resistivity logs). With categorical or qualitative data and using
geostatistical tools and conditional simulation, a discretized numerical submodel of the different
categories or uniis can be obtained. Subsequently, one can use the guantitative data available
{e.g., hydraulic testing results, packer {ests, resistivity logs) to obtain the detailed heterogeneous
struciure of each individual unit in a quantitative manner. That is, the spatially varying hydraulic
properties, namely hydraulic conductivity, can be obtained as an output of this first submodel.

For a general site-specific model and for the special case of the CNTA model, the first
submodel can be tested in terms of the existence and locaftion of the different units identified in
the conceptual geologic model. Contact between the different units is also an important aspect
that can be tested with validation data. For the CNTA model, Pohlmann ef al. (1999, 2000}
ideniify three geologic units with significant uncertainty associated with the contact between
them. Conductivity values assigned fo different layers shounid also be evaluated. This evaiuation
will focus on reducing uncertainty in the assigned conductivity values by utilizing head
measurements and a conditional simulation (or inverse} approach. For example, the sequential
seif-calibration (SSC) approach (Wen ef al., 1996; Gomez-Hemandez ef of., 1997} can be used
for this purpose.

The second major submedel for a general site-specific groundwater model is the flow
submodel, where the output of submodel (1) is used as input. A conceptual flow model is then
formulated and used in conjunction with this input and boundary conditions and assumptions to
derive the numerical flow model and solve the flow equations. This results in identifying the
flow pattern in the simulation domain, which is represented by discretized head values and
velocity components. This velocity distribution is the output of submodel {2) and is used as input
to submodel (3).
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Figure 1. A schematic representation of a general site-specific groundwater flow and transport
model showing the conceptual and numerical models and the three main submodels
linked together.

30



The flow pattern at CNTA (and at many other field sites) is fairly complicated {see
Pohlmann et a/., 2000) and it is crucial to verify the directions of the vertical and lateral head
gradients, especially in the vicinity of the contaminant source. Multiple head measurements at
different levels can be obtained from a single borehole, and these data will be crucial to testing
the flow model and its underlying input data and boundary conditions. In addition to testing the
predicted heads themselves, the head data will be used to reduce the heterogeneity uncertainty by
using an inverse method such as the SSC approach mentioned above.

In general, the last submodel in a site-specific siudy is the wansport model. The
conceptual transport model is identified by determining the source size and iocation, the release
scenarios, and the transport processes encountered during the migration of contaminants. Added
to the velocity patiem and boundary conditions, this conceptual model gives rise to the numerical
transport model where the transport equations are formulated and selved for the output of
concern. This solution yields temporal mass fiux breakthrough curves al certain boundanes,
spatial-temporal distribution of contaminant concentrations, or contaminant boundaries. Usually,
these latter outputs are the target of the entire modeling process when groundwater
contamination is the major regulatory concern.

For the CNTA transport model, the release of radionuclides from the test cavity and the
movement away from ii are just stanting (based on a cavity infill time of 30 years for a test
conducted in 1968). An important focus of validation of the iransport aspects should be verifying
whether there are any fast migration channels or failure scenarios that may have been overlooked
and would thus lead to migration distances greater than the mode! predictions. Measurement of
tritium concentrations in wells focated sufficiently far from the cavity (e.g., beyond the fraciuring
radius to separate the possibility of fast migration pathways from prompt injection issues) will be
important to test the adequacy of the fransport model and whether or not the model (within its
unicertainty bounds} has covered all the critical transpori issues.

After considering the different components and tests described above and linking the
calibration analysis to the validation analysis, we arrive at the stage of evaluating the different
submodels linked together. The flow of information between the three submodels provides a
natural linkage that will enable collective evaluation of the entire model to be conducted in
perallel with the individual submodel evaluations.

5.4 Subjective Versus Objective Judgment

Calculated and observed data for both the calibration and validation processes most often
are presented graphically, with a subjective interpretation of the guality of the match (Flavelle,
1992). It is generally preferable, however, to use some form of objective analysis to perform
model calibration and validation. The objective guality of moedel calibration is usually described
by a goodness-of-fit parameter, which reflecis how well the model results match the observed
calibration data. The goodness-of-fit is usually used to optimize the calibration of the computer
model’s adjustable parameiers and to serve as a measure by which to compare altemnate models.
This is an inverse problem, for which the main problem is the non-nniqueness of the solution that
gives rise to obtaining different parameter values that yield solutions with similar accuracies
{e.z., Poeter and Hill, 1997; Hill et al, 1998; D’Agnese ef al, 1999). The most common
goodness-of-fit parameter appears to be some form of weighted root-mean-square error, with the
error describing the difference between calculated and measured values. Unfortunately, while
quantitative evaluation of the guality of model calibration is becoming more common, the
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complexity of some of these evaluations makes them unattractive for general use by regulators
and decision-makers (Flavelle, 1992). 1t is, therefore, more appealing te invoke simple goodness-
of-fit tests and describe the calibration and validation processes in an objective manner. The
validation approach proposed here relies heavily on objective evaluations and a number of
statistical measures and tests for evaluating different aspects of the model.

A common form of objective analysis for calibrating and validating simulation models is
statistical hypothesis testing (Balci and Sargent, 1981, 1982). Two types of errors can exist in
hypothesis testing and may lead to wrong decisions if testing results are used for decision-
making. The first type of these two is called type I error, which results from rejeciing a
hypothesis while in fact it is a correct one (e.g., rejeciing the validity of a vatid model). The
secoad is referred to as type II error, which results from accepting a false hypothesis (e.g.,
accepitng the validity of an invatid model). Despite these errors, we propose te use this form of
objective analysis in addition to some other goodness-of-fit tests to evaluate the quality of the
comparison between model predictions and measurements for both calibration and validation.
More background details are given in the Appendices regarding goodness-of-fit measures and
hypothesis testing,

McCombie and McKinley (1993) argue that the decision about how much effort must go
into the validation process before the model can be comsidered to be valid is necessarily
subjective and very dependent on the complexity of the system and on the objective of using the
model in the first ptace. They further recommend that the subjective aspect of assessing if a
model is good enough be inciuded in the term “validation.” This argument and the above
discussion highlight the fact that neither purely objective judgment nor purely subjective
judgment can be used in the validation process. In other words, each of the objective and
subjective judgment components is a necessary component for the model validation process, but
is not a sufficient tool. They complement each other, and mode! builders, model users, and
regulators should come to an agreement that objective judgment will aiways be complemented
with subjective judgment and hydrogeoclogic expertise.

5.5 Validation Cost and Confidence in the Model

The cost of obtaining data and performing the analysis for model validation should be
considered in designing any validation plan. As shown in Figure 2, adapted from Sargent {1990),
there 1s a limit beyond which increased investment in model validation efforts (both data
collection and analysis) does not significantly increase confidence in the model and adds little
value to the end user (Sargent, 199G). Therefore, the model validation process requires consent
between concerned parties regarding the level of confidence required for the model to be
validated, keeping an eye on the cost that is needed to achieve this confidence level. The
proposed validation approach discussed in the next section has a number of decision points, for
which the cost of the data coliection and analysis comes into play in making these decisions.
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Figure 2. The change in model value and in the cost of investing in model development and
validation as a function of the desired confidence level in the model (adapted from
Sargent, 1990).

6. PROPOSED VALIDATION APPROACH
6.1 General

The effectiveness of a validation strategy, i.e., its ability to discriminate between good
and bad model assumptions, depends on the type of available data and how the data are used to
challenge these assumptions (Mroczkowskt ef al, 1997). These authors argue that validation
using multi-response data is a considerably more powerful strategy than traditional split-sample
testing {where a record of historical data is split into calibration and validation samples). They,
however, base their argument on the validation of conceptual catchment models, where large
historical records exist for the parameters studied. One would expect that the use of multi-
response data would also be much more powerful in validating a subsurface flow and transport
mode} than using a single type of response data. Our proposed approach to model validation
relies on using both multi-response data and diverse statistical tests and analyses io evaluate
mode] performance. By doing so, one can build confidence in the model predictions and guide
the field activities for collecting the data needed for the long-term monitoring of the site.
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To determine the accuracy of the model and its adequacy, one should consider the types
of validation tests, the number of validation tests, the degree of agreement between model and
the validation tests and the conformity between model descriptions and site-specific information
(Davis et af, 1991). These authors emphasize the necessity for rigorous development of the
validation process and the importance of providing regulators with validation information that is
as inclusive as possible and follows a logical systematic approach. The approach we propose
here relies on numerous validaiion fests and evaluations and follows a systematic step-by-step
approach as will be discussed in the next section. This systemaiic approach is particularly crucial
when it comes to validating stochastic numerical models that rely on Monte Carlo simulation
techniques, where multipie realizaiions within this siochastic framework need to be analyzed and
evaluated in 2 sysfematic manner.

A unique aspect of the CNTA validation plan is that it is the first attempt to validate a
stochastic model that explicitly accounts for spatial variability in conductivity and parametric
uncertainty. The literature review and the discussions presented in Hassan (2002) and bniefly
summarized in section 3 make it clear that even the simplesi deterministic subsurface model is
very difficult to evaluate. The proposed plan accounts for the stochastic nature of the model and
attempts to reduce the realm of possibilities given by the large number of realizations considered
in the Monte Carlo analysis.

As indicated in the previous sections, there are currently no algorithms or procedures
available to identify specific validation technigques or statistical tests that can be used in a
complete manner in the validation process. In addition to the data scarcity and other challenges
facing model validation, the CNTA transport mode! indicates that the nuclear test cavity infill is
about to be complete, which means that fransport migration away from the test cavity has not
begun {Pohlmann ez aof., 20{0). Despite these challenges, we need to build confidence that
model-based decisions will not result in unaccepiable risks to present or future popuiations or in
degradation of the natural environment (Konikow and Bredehoeft, 1992). Building confidence in
the models used to support closure of sites is the requirement for validation; developing a
validation process that allows regulatory closure of sites with significant groundwater
contaminafion should, therefore, be the ultimate goal of any validation strategy. We propose a
systematic approach for vglidating the CNTA groundwater model in 2 manner consistent with
the ultimate use of the model and the regulatory requirements. The rigor of the proposed
approach stems from its simplicity, comprehensiveness, and coverage of many aspects of the
medel rather than its mathematical complexity.

Many of the tesis that we propose to use in the validation approach and their underlying
principles are familiar. The power of these tests and the power of the integrated validation
approach stem not from their innovation but from their rigor and completeness. We are not
developing new theories or statistical analyses, but rather putting together a number of available
tools in an integrated manner to evaluate groundwater models that are used for decision making.
Together, these tests and the proposed systematic validation approach provide a structured
approach for analyzing all the key issues and components of a site-specific groundwater model in
the hope of building confidence in the decisions based on the model predictions. Individual
decisions throughout the validation stage will still be difficult, ofien requiring subjective
judgment and some trade-offs, but using the structured, systematic validation approach we
propose here will help guide the decision and make the debate among involved parties more
rational.
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COur philosophy in developing and advocating this validation approach relies on a
forward-looking perspective. That is, by carrying the groundwater modeling process one step
further beyond the small iterative loop of characterization-calibration-modeling-prediction and
back to characterization to reduce uncertainty, one can learn a great deal aboui the site and the
modgel together. Unfortunately, no matter how many times the iterative process is repeated, there
will always be a level of uncertainty about the results of these studies and whether they represent
reality or not. Without a way to exit the loop of characterization, conceptualization, calibration,
modeling, and back to characterization, resources may be allocated to efforts and studies that do
not ultimatety resolve the problem of concern. The flow chart shown in Figure 3 schematically
represents this loop (thin-lined loop) and proposes a logical way to exit this loop. This occurs
through the groundwater flow and contaminant transport validation process (the outer, bold-lined
loop in Figure 3), which develops a sysiematic meihod of determining when adequate confidence
in the groundwater model has been achieved and long-term monitoring should begin. It is
possible, of course, that model deficiencies can drive the process back to the inner loop of
characterization, but this would only occur after analysis of validation and monitoring results
over time.

Figure 3 alsc shows the linkage between the proposed strategy and the ten-step UGTA
model validation strategy. Steps | through 9 of the UGTA model validation strategy belong to
the development stage that is represented in the figure by the path from characterization o the
results circles within the closed, thin-lined loop. Step 10 in the UGTA strategy (the postaudit) is
highlighted by the bold lines in Figure 3, and if represents the model validation conceptualization
as perceived in this study. It is imporian! to notice that the five-year proof-of-concept monitoring
network development that is required in the FFACO (2000) can start once the developmeni loop
is exited and can be performed simultaneously with the model validation analyses, monitoring
network development and the postaudii. As stated in the FFACO {2000}, measurement of field
parameters through this proof-of-concept monitoring network will be used to demonstrate that
the model is capable of making reasonable predictions that fall within an acceptable level of
confidence. This is exactly what the closed, bold-lined loop in Figure 3 is designed to provide.
When the initial monitoring network is installed, data collected, and evaluation tests performed
for evaluating and validating the model, the question will arise as to how the model predictions
compare to the collected field measurements. If the results indicate major model deficiencies, the
process will be driven back to UGTA step 2 {the leftmost bold, upward arrow in Figure 3). Steps
2 through 9 of the UGTA strategy will be repeated and this repetition is considered as part of the
model postaudit or medel validation stage. If our confidence-building, bold-lined loop indicates
reasonable model performance, but more confidence building is still needed, the process is
driven back to the simultanecus stages of selecting validation targets and developing {or
augmenting) the proof-of-concept monitoring network. Here, new weli locations may need to be
determined to augment the initial monitoring network. This will provide additional wells for
growing the five-year proof-of-concept monitoring network, and this iterative process continues
until sufficient confidence is built in the model formulation and predictions.

Once UGTA step 10 (model postandit), the proof-of-concept stage, and confidence-
building loop (model validation process) have been completed successfully and the model is
deemed validated, the design will start on the long-term monitoring network that will angment
existing wells so as to provide sufficient surveillance for the site. Using the long-term monitoring
data to re-evaluate the model over time is considered as a continuous model validation and
postaudit process and is necessary for the long-time period of concern at these nuclear testing
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sites. Again, the how-to steps relaied to the UGTA model postaudit stage and the link to the
proof-of-concept monitoring are not mentioned in any quantitative manner in FFACO (2000).
What is provided in Figure 4 and discussed in Section 6.2 is a detailed approach for performing
this process in the case of stochastic numerical models that rely on Monte Carlo simulations,
which is the case for CNTA and other UGTA and offsites studies.

It is important to note that previous studies that dealt with groundwaier model validation
{e.g., Tsang, 1991) focused only on the small, iterative loop {(thin-lined loop) shown in Figure 3.
For example, Tsang (1991, Table 1) asks the question of whether the “evaluation of the results”
indicates that uncertainty is too large or results with estimated uncertainty are good enough. This
is essentially equivalent to the data decision analysis step in the thin-lined loop in Figure 3. Also,
previous studies did not explicitly consider the stochastic nature in a Monte Carlo fashion as is
considered here for the CNTA stochastic model. Furthermore, the guantitative aspects were
absent in previous studies, whereas the proposed approach contains many quantitative tocls such
as goodness-of-fit measures, hypothesis testing, and regression analysis in evaluating model
results.

Going forward with the validation analysis will allow one to say “maybe” the model is
good enough, while staying in the small iterative thin-lined loop of Figure 3 wil} noi allow any
judgment regarding the model. There will never be enough facts or data to eliminate all the
uncertainty or to make a decision based solely on those facts. It is, therefore, better 0 move
forward in the face of uncertainty and make decisions regarding the model conformity with
regulatory requirements, and then evaluate these decisions periodically over time.

6.2 Proposed Step-by-Step Procedure for Model Validation

To stari, the steps to camry oul the proposed model validation and the refinement of the
model predictions based on the collecied validation data are listed. Detailed theoretical
background and descriptions of the different steps are presented in the Appendices. The proposed
steps, shown in the flow chart of Figure 4, are as follows:

Step 1: Identify the data needed for validation, the number and location of the wells, and
the type of laboratory or field experiments needed. The wetll locations can be determined based
on the existing model and should favor locations likely to encounter fast migration pathways.
This step will mark the beginning of the five-year proof-of-concept monitoring network
development siage. The well locations will be determined using a monitoring network design
appreach to provide measurements that will be used to show whether the model is capable of
making reasonable predictions that fall within an acceptable level of confidence. There are
additional factors guding well location, which are determined by the site conditions and the
nature of contamination. For example, for the CNTA model, the first consideration is that welis
should be located far enough outside the fractured radius of the zone impacied by the nuclear iest
to avoid confusing prompt injection of radionuclides from the blast with radionuclide migration.
Second, the wells should be located around the cavity in such orientation to obtain the most
benefit from them in validating the model and refining it. The layout of the welis should be
designed to enable a venification of lateral and vertical head gradients and flow directions around
the cavity area. Other factors such as safety issues associated with radioactive contamination and
the cost of drilling and collecting data have to be considered. Sequencing of data collection is also
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Figure 4. A flow chart showing the proposed validation approach and the associated iterative
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important. Though it may be more practical and cost-efficient to drill the wells simultaneously,
driliing one well at a time and collecting all possible data from it and testing the model to
determine the next field activity may be a better approach. Again, these choices depend on the
problem at hand and need a consensus among model developers and model users.

Step 2: Carry out the fieldwork to install the wells and obtain the largest amouni of data
possible from the wells. The data should include geophysical logging, resistivity logs, head
measurements, concentrations (e.g., checking for fritium), and any other information {e.g.,
temperaiure logs, conductivity measurements} that could be used to test the model structure,
inpui, or output. The phtlosophy here is that the major portion of cost in the case of deep
groundwater contamination {e.g., nuclear testing sites) is incurred during drilling the wells.
Therefore, it makes a good investment to coilect as much data as possible from these wells,
because the extra data collection cost (in the short-run) is geing to be marginal in comparison io
the drithing cost.

Step 3: Evaluate the calibration accuracy for each individual realization using different
goodness-of-fit measures in addition to the generalized likelihood uncertainiy estimator (GLUE)
(Freer et al., 1996; Franks and Beven, 1997; Pohlmann et al, 2001). This assumes that the
original model calibration was qualitative in nature {which is a common case) and was done o
minimize the deviation between model prediction and observed calibration data based mainly on
visual inspection. A more detailed discussion of the GLUE analysis is presented in Appendix A.
Other tools such as linear regression analysis, goodness-of-fit tests and hypothesis testing can be
used to provide additional objective means to evaluate the relative strength of each realization in
terms of reproducing the field calibration data. That relative strength wilt be linked later to the
ability of individual realizations to match the validation data. Appendix B presents some
description and discussion of goodness-of-fit measures and Appendix C reviews some linear
regression analyses and benefits in model calibration and validation. Also, the use of hypothesis
testing for model evaluation is briefly described in Appendix D.

Step 4: Perform the different validation tests that will help evaluate the different
submodels and components of the model. A promising stochastic validation approach was
proposed by Luis and McLaughlin (1992) and was applied to a two-dimensional, deterministic,
unsaturated flow model for predicting moisture movement during a field experiment carried out
near Las Cruces, New Mexico. A detailed description of this approach is summarized from Luis
and McLaughiin (1992} and presented in Appendix E. This approach can be adapted and used to
test the flow model output (heads) under saturated conditions. Other objective tests (e.g.,
goodness-of-fit tests) can be used for the heads to complement this stochastic approach that is
based on hypothesis testing. Similar tests will be performed to test model structure and or input
depending on the type of data to be obtained in the field. Some data will be used 1o check the
occurrence or lack thereof of failure scenarios (e.g., at CNTA one needs to check if tritium exists
much farther from the cavity than is predicted by any realization of the stochastic medel}. The
philosophy here is to test each individual realization with as many diverse tesis {in termns of the
statistical nature of the test and the tested aspect of the model) as pessible and have a quantitative
measure of the adequacy of each realization in capturing the main features of the modeled
system.

Step 5: Link the resuits of the calibration accuracy evaluations and the validation tests for
all realizations and sort the realizations in terms of their adequacy and closeness to the field data.
A subjective element may be invoked in this sorting based on expert judgments and

39



hydrogeologic understanding. The objective here is to filter out the realizations that show a
major deviation or inadequacy in many of the tested aspects and focus on those that “passed” the
majority of the tests and evaluations. By doing so, the range of output uncertainty is reduced and
the subsequent effort can be focused on the most representative realizations/scenarios. To
coniinue reducing the uncertainty level, a refinement of the conductivity distribution can be
made using the SSC method mentioned earlier and described in Appendix F. In this method,
head (and concentration) measurements can be used to condition the generation of the
conductivity field in such a way that the uncertainty in the conductivity heterogeneity pattern
around each measurement location is reduced. This updating of the conductivity distribution can
be dene for each of the original conductivity realizations that were retained in the analysis.

Step 6: The results of step 5 will determine the forward path and guide the decision as to
whether there is a sufficient number of realizations that attained a satisfaciory high score {thus
building confidence in the original model} and are considered sufficient for further analysis or
whether this number of realizations is not sufficient in comparison 1o the realizations with low
scores indicating that the original model needs major revisions.

6a. If the number of realizations with low scores is very large compared to the total
number of model realizations, it is an indication that the model has a major deficiency or
conceptual problem or that the input is not correct. In this case, the conceptual model shoutd be
revised and model structure updated based only on the original calibration data if possible. This
means that the validation data should not be used and in essence should be forgotten. This is
done to avoid new validation data collection at this stage when the previous analyses indicate
that the model is inadequate as is. If this is difficult, however, a compromise solution could be to
split the validation data set and use part of it in the mode! refinement process and save the other
part for the next round of validation tests and analyses. The possibility also exists that after the
mode! is refined, new wells at different locations will be needed (e.g., if the analysis indicates a
shift in the flow direction such that the initial monitoring network will not be optimally located
for collecting the relevant data). In this case, the five-year proof-of-concept monitoring network
will be modified and used for the new round of validation data collection. This iterative process,
when eventually completed, will in essence provide the evidence that the monitoring network is
doing what it is supposed to do, which is the main purpose of the five-year proof-of-concept
stage of the entire process.

6b. 1If the number of realizations with high scores is found sufficient, this indicates that
the model does not have any major deficiencies or conceptual problems and one can move
forward to step number 7.

Step 7: Once the rightmost loop in Figure 4 1s completed successfully and a sufficient
number of the model realizations show acceptable performance (this is judgmental and should be
based on the hydrologic expertise and judgment of the researchers involved}, the model sponsors
and regulators in collaboration with the model developers have to answer the last question in
Figure 4. This question will determine whether the validation results meet the regulatory
abjectives or not. Anderson and Woessner (1992a) suggested that regulators should be content
with some degree of partial validation and should further shift the focus from demands for
validation to demands for good modeling protocol that includes a complete description of model
design, a thorough assessment of model calibration and an uncertainty analysis. It is important to
recognize that the data collected represent both validation and monitoring data. The five-year
proof-of-concept monitoring network development will essentially occur at the beginning of the
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validation process (postandit in FFACO’s terms) and the data collecied will be used to
“demonstrate that the model is capable of making reasonable predictions that fail within an
acceptable level of confidence.” Thus the question posed at this stage is whether the designed
five-year proof-of-concept monitoring network provides sufficient surveillance for the site and
whether the collected data and the resulting evaluation tests provide sufficient evidence about the
fidelity of the model.

7a. I the answer to the guestion posed is no and there is a need io collect more data for
more confidence building in the model or that the monitoring network needs to be modified, then
the lefi-hand-side loop in Figure 4 gives nise to a new iteration of model refinement, new well
placement, data collection and re-evaluation. In this case, all available data become calibration
data and new data will need to be collected for validation, probably from new wells. Steps 1 to &
are repeated with the data to be collected determined based on the analysis of the refined model.
It is thus beiter to benefit from the vatidation data and refine the mode! using the representative
realizations before proceeding to the new round of data collection. The new wells for this round
should be selected to serve two purposes: 1) sources for the new vaiidation data and 2} location
targets for the long-term monitoring of the site.

7h. If the answer to the question posed is yes, validation is deemed sufficient and the
model is considered adequate or robust and we then proceed to siep 8.

Step 8: Design a long-term monitoring plan. This includes setting and clarifying the
objectives of the monitoring, designing the monitoring networks, determining the frequency of
sampling, where, when and what to sample, etc.

The above steps outline the general approach we propose for validating stochastic
numerical groundwater models that rely on Monte Carlo simulations. Figure 4 shows a flow
chart that sumrnarizes these steps and the iterative process that needs to be implemented for
building confidence in groundwater predictive models and moving toward the long-term
monitoring and closure of contaminated sites. The approach is general in natre and the
application to the CNTA model will be the first attempt to validate a stochastic model for a
nuclear. testing site to the best of our knowledge. The iterative nature of the proposed approach is
one of its greatest strength. Numerical groundwater models, and in particular stochastic models,
are very complex and modifying or changing any aspect of the model may produce unanticipated
consequences in a different aspect of the model. To get the best ontcome of the validation
process, one needs to both consider the different details separatety and take the broader view of
the entire model while working step-by-step through the different decisions and trade-offs.

It can be seen and expected that the process of validating a site-specific groundwater
mode! 1s not an easy one. Throughowt the structured process described above, we may wonder
whether there is any way to know and confirm that we are on the right track. It is our belief that
the way to this confirmation is the cumulative knowledge gained from the different stages of the
validation process. That is, a set of independent fests and evaluations will provide a great
Imowledge about the model performance and their results will provide some incremental, but
additive, pieces of information that will be of superior tportance. While there are no guarantees
of success {(attaining 2 conclusive ouicome about model performance), the combined presence of
these different results and evaluations sharpiy improves the odds that one can make a good
decision about the model performance.
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As mentionied earlier, an attempt is made during the deveiopment of this approach to
honor most of the critical issues raised in previous groundwater model validation studies and
discussions. For example, Konikow (1986) states that models should be considered as dynamic
representaiions of nature, subject to further refinements and improvements. As new data become
available (e.g., through new wells), model predictions can be evaluated, validated or invalidated,
and then modified if necessary. This dynamic loop is considered in the proposed validation
approach outlined above. Also, Tsang (1989, 1991) argues that it is important to validate every
step of the modeling process in an iterative manner for models that are used for long-term
predictions with emphasis on adding an element to the modeling process that can be used to
suggest what further measurements are needed to improve the confidence level in the model
predictions. Along similar lines, Anderson and Woessner (1992a) state that conceptual models
need periodic improvements through data collection and a trial-and-error process of evaluation
Over many years.

For completeness, we present all the necessary background regarding the proposed tests
and techniques in the Appendices. This background information is simply compiled from the
different studies cited in the Appendices and is aimed at clarifying the proposed approach and
summarizing the necessary tools for this approach in one document. It should be mentioned,
however, that these tools are just examples of many statistical tools and techniques that can be
used to achieve the same goals and meet the same objectives. Examples are given here in the
hope that other techniques and approaches are developed that will enhance the proposed
validation approach and make it more practical and appealing 10 model sponsors and regulators,

7. CONCLUDING REMARKS

The challenge of validating numerical models, especially subsurface models, arises not
only from the technical and scientific difficulty, but also from the lack of widely accepted
definition of the term itself and the purpose of the process of validation. This report is an attempt
to summarize the different validation perspectives and definitions, to analyze their merits, and to
propose a model validation plan for evaluating the CNTA model. Important definitions and the
distinctions that have to be made when dealing with the terms “‘calibration,” “verification,” and
“validation” are highlighted. A review is presented of studies that deal with groundwater model
validation and propose certain validation sirategies. Common to mest, if not all, of these studies
is the fact that no guantitative objective tools were provided in an integrated manner in any of the
proposed appreaches, making them difficult to adapt and use in different situations. It is also
common among these studies that the general consensus of the hydregeologic community is that
absotute validity (accurate or exact representation of reality) is not even a theoretical possibility
and is definitely not a regulatory requirement. Confidence building in the modeling process and
in the subsequent evaluation and validation procedure is viewed as the best way to achieve
model validation objectives and acquire acceptance of the reguiators and the public.

Building on this review, a groundwater mode! validation strategy should take into
account a number of important issues that were recognized as being important to the process in
many of the reviewed studies. These issues include reducing prediction uncertainty, diversity of
data and evaluation tests, relying on objective measures whenever possible and also capitalizing
on subjective judgment and hydrogeologic insights, testing the different submodels individually
and in connection to one another, and recognizing that the cost element of the validation process
will play a significant rele in making many of the decisions throughout the process. Considering
these issues and the fact that the confidence building process in model prediction is a long-term
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and iterative process, a systematic approach for the general case of a stochastic namerical model
has been developed and is proposed for the CNTA model evaluation. One of the main cutcomes
of this study is an integrated validation approach that relies on an iterative calibration-modeling-
monitonng-evaluation-refinement cycle, which would eventually increase confidence in CNTA
model predictions and reduce the uncertainty level associated with these predictions. The
methodology will be fuily developed, tested, and enhanced during the implementation and
application to the CNTA groundwater flow and transport model.

Opponents of the use of the term “model validaiion™ postulate that the term is misleading
to the public because it conveys a connotation of correctness that cannot be proven true, We
disagree with this paradigm for a number of reasons. First, is the fact that whether the pubtic
agrees or not and whether the hydrogeclogic community agrees or not, medels are being used for
regulatory decisions at & wide vaviety of sites, and many of these regulations call for some form
of validation of the models. Therefore, instead of driving the process and studies to a halt, it is
better to devote efforts to developing the tools and technigues that can be used for assessing the
model results, and revising decisions based on them if needed. This would at least allow for
atlocating resources to achieve better understanding of the entire monitoring and validation
process. Second, the term “model validation” requires as much effort to explain the underlying
togic 1o the public as the terms “calibration,” “history matching,” and “benchmarking.® To a
technician or a mechanic who is familiar with calibrating digital scales or calipers, the term
“calibration” alludes to high accuracy and correctness. Therefore, the calibration term can also

be misleading to the public unless the underlying definitions and logic are cleariy explained and
simplified.

Third, Lee et al. {1996) identified significant misuses of groundwater models in 20
reviewed modeling reports that were used to make regulatory decisions. A well-established
mode! validation procedure or process with frigger mechanisms for revisiting the model
conceptualization if field data indicate deficiencies may have averted some of these misuses.
Fourth, statements such as “groundwater medels cannot be validated” may lead to a laid-back
attitude on the part of modelers, hydrogeclogists, or even regutatory agencies when it comes to
testing and evaluating their models.

Finally, an analogy to the development and use of stochastic modeling can be made to
support the above peints. Dagan {2002) indicates that stochastic modeling of subsurface flow and
transport has reached an advanced stage and has been applied te aquifer characterization, to the
design and analysis of elaborate field experiments, and to a few major projecis. So, the tools
have been advanced and thoroughly developed despite the claims of many oppenents who
described the stochastic approaches as GIGO (garbage in garbage out). The lesson that can be
learned here is that tools and technigues need to be developed and the focus needs to be shified
from what we call the process to how we best develop and shape the process of mode] validation
in the hope that better decision making can be achieved.
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Appendices: Background and Theoretical Concepts
Appendix A: Generalized Likelihood Uncertainty Estimate Analysis

To honor site-specific data during calibration and subsequent modeling, the generalized
likelihood uncertainty estimator {GLUE) algorithm can be used {Freer et al., 1996; Franks and
Beven, 1997; Pohlmann et af., 2001}. The GLUE procedure is an extension of Monte Carlo
random sampling to incorporate the goodness-of-fit of each simulation. A likelihood measure is
an evaluation of the guantitative goodness-of-fit. For example, the likelihood estimator for the
soluiion of the flow equations can be defined as

e =[Sy

where

e=h, -k, (A2}
andL{ﬂE-)} is the likelihood of the vector of outputs, ¥, knowing @ , the vector of random inputs;

i s is the simulated head at the point j; h; is the observed head at that point; and A is a

likelthcod shape factor. Although the choice of the M factor is subjective, its value defines its
relative function. As M approaches zero, likelihcod approaches unity and each simulation has
equal weight, as is the case with traditional Monte Carlo analysis. As M approaches infinity,
simulations with the lowesi sum of squared errors (the simulations that best fit the field data)
receive essentially atl of the weight, which is analogous to an inverse solution. The likelihood
weights that are calculated for each realization based on Eq. {Al} can be used in subsequent
modeling to give more weighi to those realizations that best fit the field data during the
calibration process. Also, these weights can be used laler in the validation stage {0 compare the
performance of individual realizations when acquiring new field data for validation analysis.

As was shown in Figure 3, one of the steps in the proposed validation approach is to
quantitatively evaluvate the calibration goodness-of-fit for each realization using the GLUE
analysis. This analysis will give each realization 2 relative weight indicating its strength in
matching the calibration iargets. These weights are the first quantitative measures for different
realizations, which can later be combined with and compared to the different evaluations and
tests performed using the validation data.
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Appendix B: Goodness-of-Fit Measures/

Legates and McCabe (1999} provide an evaluation of the common goodness-of-fit
measures that are used in hydrologic and hydroclimatic model validation. They argue that
correlation and correlation-based measures (e.g., coefficient of determination R%) are
oversensitive to extreme values or outliers and insensitive to additive and proportional
differences between model predictions and observations. They conclude that these measures
should not be used to assess goodness-of-fit of a hydrologic model and that additional
evaluations such as summary statistics and absolute error measures should supplement model
evaluation tcols. They also present useful alternative goodness-of-fit and relative error measures
(e.g., coefficient of efficiency, index of agreement) that overcome many of the limifations of
correlaiion-based measures. The remainder of this Appendix is a summary of the presentation of
Legates and McCabe (1999} highlighting the definitions and differences between different
measures as presented int the context of model evaluation.

B.1 Coefficient of Determination R

The coefficient of determination describes the proportion of the total variance in the
observed data that can be explained by the model and ranges from 0.0 to 1.0, with higher values
indicating better agreement

N — —
2.0, -0)P, -P)
R = = (B1)

" AT RE
[Z(Q—*G}E] [Z(H-P)z]

i=1

where the overbar denotes the mean, P denotes predicted variable, O indicates observed values
and & is the number of available pairs of predicted versus measured values. It can be seen that if
P; = (AO; + B} for any non-zero value of 4 and any value of B, then R* = 1.0. Thus R’ is
msensitive to additive and proportional differences between the model predictions and
observations. It is also more sensitive to outliers than to observations near the mean.

B.2 Coefficient of Efficiency E

The coefficient of efficiency, which ranges from minus infinity to 1.0, is defined as
{Legates and McCabe, 1999)

E=j_—i_ (B2)

N 2

Z[Oi —5)

i=1

The coefficient of efficiency represents an improvement over the coefficient of

determination for model evaluation purposes in that it is sensitive to differences in the observed
and model-simulated means and variances; that is, if P; = {40; + B), then E decreases as 4 and B
vary from 1.0 and 0.0, respectively. Because of the squared differences, however, £ is overly
sensitive to extreme values, as is R.
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B.3 Index of Agreement d

The index of agreement, d, was developed to overcome the insensitivity of correlation-
based measures to additive and proportional differences between observations and model
simulations. It is expressed as {Willmot{, 1981)

N

>0 -FRy
d=1- il =1—N-I”—[S—E (B3)

Sfr-olo-of

i=1

The index of agreement varies from 0.0 to 1.0 and represents the ratio between the mean
square error and the “potential error” (PE), multiplied by N and then subtracted from unity. The

potential error represents the largest value that (0, — P, Y can attain for each observed-simulated
pair (Eegates and McCabe, 1999). As with £, the index of agreement, d, represents an
improvement over R, but also is sensitive to extreme values owing to the squared differences.

The sensitivity of &, £ and d to extreme values Jed to the suggestion thal a more generic
index of agreement could be used in the form (Willmott ef af., 1985)

i{OE—P,}j
dy=1- (B4)
> (7 -0]+/o,-2])

where j represents an arbitrary power (i.e., a positive integer). The original index of agreement 4
given in Eq. (B3) becomes 4> using this notation. For j = 1, the resulting index, d), has the
advantage that errors and differences are given their appropriate weighting, not inflated by their
squared values. Similarly, the coeffictent of efficiency can be adjusted as

>(0,-BY

EJ. =1 _ =l

Fil

¥
>(0,-0)
i=1
Legates and McCabe (1999) and Willmott (1981) argue that these dimensionless
measures (e.g., £jand ) should not be used exclusively. It may be necessary and appropriate to
quantify the error in terms of the units of the variable at hand. Therefore, in addition to £ and 4
tneasures, one has to consider absolute error measures, which include the root mean sguare error

L
(RMSE =+MSE) and the mean absolute error [MAE=%Z|O,. —P,.|} These additional
i=1
measures describe the difference between the model simulations and observations in the units of
the variable predicted. Legaies and McCabe (1999} conclude by recormmending that the
assessment of the model performance should include at least one “goodness-of-fit” or relative

error measure (e.g., £1and di) and at least one absclute error measure (e.g., RMSE or MAE)

(B3)

38

il
Pl

WA



with additional supporting infermation (e.g., a companscn between the observed and simulated
mean and standard deviations).

It should be mentioned here that the analysis of Legates and McCabe {1999) was based
on analysis of time series modetls, for which large-size data sets are available to test prediction
models. In the subsurface, however, availability of such abundant data never is (and never will
be) the case. Therefore, some of the goodness-of-fit measures discussed above may not be usable
for such limited data. It is thus important not to rely on a single measure, but to use as many
measures as possible 1o get a better evaluation of the model predictions.
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Appendix C: Linear Regression Analysis

Davis and Goodrich {1990) propose examining the deviations from maodel calibration for
rends to identify systematic errors, the existence of which would invalidate the model. Fiavelle
et al. (1990) perform a linear regression analysis of calculated versus measured data for both the
calibration and the validation processes. They interpret the standard error of the regression as the
goodness-of-hit and the slope of the regression line as the model bias. Flavelle {(1992) argues that
this linear regression analysis and iis interpretation are the initial steps for evaluating model
validation. From the perspective of making regulatory decisions based on model calculations,
this approach has some advantages and is based on the following reasoning sumimarized from
Flavelle {1992},

Three components can be looked at, which lead to four possibilities for the linear
regression analysis and interpretation. The ihree components are the input data uvsed in the
model, the model iisell {all of the necessary processes, mechanisms and siructures) and the
validation or calibraiion data. The first possibility is that the three components are perfect, i.e.,
perfecily known imput data (no uncertainty) are applied to a perfect model and the calculated
resulis are compared to perfect observations (no uncertainty and no randomness). In this case, a
plot of calculated versus measured data would be a perfect straight line with unit slope, zero
intercept, perfect correlation coefficient and no regression ervor (Figure Cl-a, recreated based on
Figure 1 of Flavelle (1992)). The second possibility occurs if the model is not perfect, whereas
both input data and validation/calibration data are perfect. A systematic (i.e., non-random} bias
would occur and the regression line would have a slope different from unity and/or an intercept
different from zero (Figure C1-b recreated based on Figure 1 of Flavelle (1992)). The data points
may not be collinear, so the correlation coefficient may be less than one. The third possibility
occurs when the input daia are uncertain, and/or when the observations are uncertain or have a
random component. In this case, the results from a perfect mode! would have a regression line
with a unit slope but with some data scatier about the line (Figure Cl-¢}. This data scatter is
measured by the standard error of the regression, which is used to determine the confidence
interval about the regression line. Finally, if the observed or input datz are uncertain and the
model is not perfect, the regression line will not have a unit slope and/or intercept of zero, and
there will be data scatter about the regression line {Figure C1-d).

Following this reasoning, a linear regression of calculated against measured data provides
an initial method to evaluate empirically the quality of the data {it. Bias in the model and
uncertainty in the input and measured data would be expected to affect both the slope of the
regression line and the standard error of the regression. There are several technigues for fitting a
straight line through x, y data using regression analysis. The most common regression analysis
for predictive purposes (and the most common regression analysis in general) is the Ordinary
Least Squares {OLS) regression of a dependent variable against an independent variable.

Based on this linear regressicn, one needs to stafisfically test the assertion that the slope
of the regression line is unity and that the infercept of the line is zero. Hypothesis testing (see
Appendix D) can be used for this purpose with the null hypothesis for the slope being Hy: slope
= 1, and the alternate hypothesis 1s H;: slope = 1. The test statistic is {(slope-1) + standard
deviation of the slope). This is to be compared to the critical value of the t-distribution at (n - 2}
degrees of freedom {» is the number of data poinis) and at the o« level of significance,
t(n—2,1-0-5a). If the absolute value of the test statistic exceeds the critical value, the null
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hypothesis is rejected. In a similar manner, the null hypothesis of a zero intercept can be
examined. Failing to reject both null hypotheses does not mean the medel is free of biases, only
that this analysis fails to identify any bias (Flavelie, 1992).

A) Perfect Model B) Imperfect Model
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Figure Cl1. Linear regression scenarics when applied to the comparison between model
predictions and observations (adapted from Flavelle, 1992).

The use of linear regression analysis to evaluate the accuracy of model calculations is not
inconsistent with some of the other calibration approaches being developed. Most of these other
approaches use a goodness-of-fit parameter based on some form of the difference between the
calculated and measured values. Davis and Goodrich (1990) suggested that the deviations of the
calculated values from the observations should be examined for trends to identify model bias.
The deviations between calculated and observed values correspond to the deviation of cbserved
versus predicted data points from the 45° line on the linear ploi. Trends in the set of deviations
are what cause the slope of a regression line to vary from unity. Regression anaiysis has a
compelling advantage over analysis of the deviations, as it has been shown that the assumption
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that the regression residuals are normally distribuied is not unreasonable (Draper and Smith,
1981}, white the deviations between calculated and observed data may not be normatly
distributed. Statistical analysis of non-nermally distributed data usually requires non-parametric

statistical tests, which are more complex than parametric tests used for normaily distributed data
{(Flavelte, 1992).
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Appendix D: Hypothesis Testing

Statistical hypothesis testing can be used as a quantitative tool for evaluating predictive
models. The test usually postulates a null hypothesis (Hp) and a complementary hypothesis (H; ).
The null hypothesis postulates the assumption or result that needs to be tested (e.g., the model is
valid or the linear regression line has a slope of unity), while the complementary hypothesis
postulates the opposite. Two types of ermors can occur in hypothesis testing with certain
probabilities: type I emror and type Il error. The probability of type I emor is called model
builder’s risk (&), whereas the probability of type I error is called model user’s risk (), and in
model] validation, model user’s risk is extremely imporiant and must be kept small (Sargent,
1990). These probabilities and those for making the right decisions are shown in Table (D1},
adapted from Balci and Sargent (1981). Boih type [ and type Il errors must be considered in
using hypothesis testing for model validation and the risks resulting from these errors can be
decreased at the expense of increasing the sample sizes of observations.

Tabie D1. Outcomes of hypothesis testing {adapted from Balci and Sargent, 1981).

Actual Status of the Model
Result of Model is Valid Model is Invalid
H is Testi ; i i
ypothesis Testing Null Hypothesis, Ho, is True Cumplementar%rrﬁlgpothesm H, is
Do not reject Hg Correct Decision Model User’s Risk g
Reject Hy Model Builder’s Risk « Correct Decision

Balci and Sargent (1981, 1982) developed a methodelogy for constructing the
relationships between mode! user’s risk, model builder’s risk, acceptable validity range, sample
sizes and cost of data coliection when statistical hypothesis testing is used for validating a
simulation model of a real, observable system. The acceptable validity range is the amount of
acceptable accuracy required for the model to be valid under a given set of experimental
conditions. This range is determined in terms of a validity measure that determines the amount of
agreement {or lack thereof) between the mode! predictions and the actual observable system.
Balci and Savgent {1981} use an Operating Characteristic Curve (Miller and Freund, 1977) to
¢xamine the probability of accepting a simulation model as being valid and the interplay between
validity measure, model builder’s risk and model user’s risk. This Operation Characteristic
Curve is shown in Figure D1 for two different values of confidence level, e . It can be easily

seen from the figure that the model builder’s risk has the limits o <a< {1- ;‘3'*} and the model

user’s risk has the limits 0< < ﬁ*. Decreasing the upper bound of the todel user’s risk
increases the upper bound of the model builder’s risk. One can decrease model user’s risk by
increasing the range of acceptable validity {increasing A'), increasing the minimum model
builder’s risk o:*, of increasing the sample size of the observation data. Thus, there is a direct
relation between model builder’s risk, model user’s risk, acceptable validity range and sample
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sizes of observations (equivalent to a cost parameter), and a tradeoff among these parameters can
be made by the model sponsor, model user (or regulator), and model builder for the intended
application of the mode! {Balci and Sargent, 1981).

‘l F
| o, o, < Model Builder's Risk < (1B}
""""""" 0 < Model User's Risk <’
] -
E 0 = Acceptable Valldity Ranges A,
2
=
X
=
g
Lot
(=]
§
By
ﬁ; - vees
o

WValidity Mecasure A A F

Figure D1. Schematic representation of the Operating Characteristic Curves depicting the
relationships between o, ﬁ', and ¥ (adapted from Balci and Sargent, 1981).

66



Appendix E: Stochastic Validation Approach (Luis and McLaughlin, 1592)

Luis and McLaughlin {1992) propose and apply a stochastic approach that relies on
hypothesis testing to validaie a two-dimensional, deterministic, unsaturated flow model for
predicting moisture movement at a field site near Las Cruces, New Mexico. The approach begins
by identifying the factors that contribute 1o the differences between model prediciions and
observations. A number of assumptions are used in Luis and McLaughlin’s (1992) study and are
invoked here and adapied for the general case of a saturated flow model and the special case of
the CNTA flow model. 1t is assumed that a flow model is used for predicting the distribution of
hydrautic head in space, which describes the targe-scale fiow behavior that affects the movement
and transport of contaminants. Another assumption is that the observations to be made for the
purpose of model validation are small-scale observations collected at sparse points in space and
are assumed to be consistent with the steady stale assumption of the model.

Under these assumptions, the differences between predicted and measured head values
can be attributed to the following three error sources: {1} measurement etrors which represent the
difference between the true values and the small-scale values of hydraulic head; {2) spatial
heterogeneity, which represents the difference between the large-scale trend (or smoothed head)
that the model is intended to predict and the true small-scale values of head; and (3) mode! error,
which represents the difference between the model prediction and the actual smoothed trend.
Figure El-A shows schematic representations of these error sources, where an actual, #;

fluctuating (due te heierogeneity) head distributicn with a large-scale trend, I?J., 18 shown in

-

conjunction with a hypothesized stepwise distribution representing model prediction, 4, .

Measurement errors are onty dependent on {he measurement protocol and accuracy of the device
used, which are not related in any way to the model. Spatial heterogeneity effect is embedded in
the difference between the small-scale measurements and the large-scale trend, and this
difference is not really an error buj a reflection of the difference in scale between the measured
aryd predicted quantities (McLaughlin and Luis, 1990). Model error is a reflection of the model’s
ability to predict the large-scale trend, which is the primary guantity of interest in this case, and
could be due to conceptual deficiencies or erroneous inputs.

The first siep in the analysis will be to decompose residuals into three terms, which
account for the three error sources identified earlier. The jth measurement residual, &, observed at

location x; (for /= 1,...N), where & is the total number of head measurements used for validation,
can be written as

g(x;)=g; =h; —h;(H) (E1)

where }:; = h*[xj) is the head measurement at x; and I;J- =h {le 11 ) 15 the model prediciion at

the same location eobtained by using a set of estimated model parameters, 7. Note that the hat

symbol is used to refer to estimated or model-predicted quantities. Equation (E1), representing
the mismatch between observations and mode! predictions, can be rewritten in terms of three
components of the emror or the mismatch. This leads to the equation

& =lhj =h;1+Thy =k} + by —h; ()] (E2)

67



A) :

Model prediction
M

A
i

Large—scale trend

A
i

Ach;albhead valug
Ji

B)

— e
Model error, (k. — k. )
R |

eroBeneity effect, (k, ~ Jg )

Measurement error, u:; —h)

Figure El. Schematic representations of the actual head distribution, large-scale trend, and
stepwise model prediction (A), and the decomposition of the measurement residnal
into three error sources or components (B).
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where the first term between the square brackets represents measurement error, the second
bracketed term represents the effect of geologic heterogeneity, and the last term represents the

model error. In (E2}, ; = h (3;} is the true head value at x; and R ;= hix ;) is the smoothed value

of the large-scale trend or the expected value of A;. Again it is assumed here that the
mathematical expectation of the head represents the large-scale (e.g., at the 50-m-grid scale of
the CNTA model) values of head that govern the flow pattern and the transport velociiies.
Equation {E2} now defines the separate errors contributing to the differences between
measurements and predictions. These errors are schemaiically shown in Figure E1-B.

The second siep 1s to consider the hypothesis that the model prediction is equal to the
smoothed, large-scale values. This is equivalent 10 assuming that the model error term in (E2) is
zero. In statistical terms the following null hypothesis is considered

H, : Model error is negligible, faj. (A =4, E3)
H, : Model error is significant, &, (#) # &,

To apply this hypothesis testing technique to the mode! validation problem, one must find
test statistics that can be used 1o check the hypothesis defined in (E3). These statistics should
depend on available head measurements and should be designed to minimize the risk associated
with making erroneous decisions of hypothesis testing {(see Appendix D on hypothesis testing
and associated errors). If one designs a very stringent test, the model user’s risk, 5, will be small
and the model builder’s risk, &, will be large (i.e., it will tend incorrectly to reject good models).
If, on the other hand, the test is less stringent, it will have a large #and a smalt & (i.e., it will tend
incorrectly to accept bad models).

Luis and McLaughlin (1992) point out that there is no rigorous way to develop an optimal
test for the spatially distributed hypothesis-testing problem posed above. A number of reasonable
tests, which can capture the different aspects of model evaluation and its inadequacy, can be used
instead. Luis and McLaughlin propose a guantitative approach to determine whether statistics
such as the sample mean and covariance of the residuals are consistent with hypothesis Hy in
(E3). When the hypothesis is true, the mean measurement residual is written as

g; =(h; —h;1+[h; k) (E4)

The second term on the right-hand side is zero by construction. The first term is simply
the mean measurement error (the measurement bias). If the bias in the measurement device is
known, then it can replace the first term on the right-hand side of {(E4). Otherwise, it is expected
that the measurement residuals have a zero mean at all sample locations

g;=0 Vi (ES)
To denive the variance of the measurement residual, Luis and McLaughlin (1992) assume
that measurement errors [}t; —h;) are uncorrelated with errors due to spatial heterogeneity

( & —Ej] when the mean measurement residual {2 ) is zero. The covariance between two dif-
ferent measurement residuals is then written as

Prp (1K) = [ = h 1k — by )+ Ly — by Jhg — e (E6)



If it is further assumed that measurement errors at different locations are uncorrelated
with one another and have 2 common variance, Eq. (E6) can be written as

P j,k)y=0.8,+P, (k) (E7)

where cr:. is the measurement error variance, P (f, k)is the covariance between the true point
head measurements /; and #4; , and &, is the Kronecker delta function (5, =1ifj=4 8,=0
otherwise). The desired measurement residual variance can then be written by evaluaiing the
zero-lag covariances in Eq. {(E7)

o =g

2 2
2 =0, to} (E8)

The head variance, o} , in (E8) plays a key role in this approach since it defines how

much variability one should expect around the model’s predictions when the model structure and
measurements are both perfect. In other words, this variance establishes a 1ype of lower bound
on the model’s ability to predict point values of head (Luis and McELaughlin, {992). If the head
variance can be derived directly from the flow equation {e.g., using the solution of the statistical
moment equations as presented by Zhang [1998]), Eq. (E8) can be used to evaluate the
measurement residual variance to be expected when hypothesis Hy in (E3) is true. Alternatively,
one can use the numerical results of the flow model and estimate the variance of the head at each
node of the discretized domain, and then use Eq. (E8) to evaluate the measurement residual
variance under the assumption that Hy is correct.

If the actual residual variance is much larger, it can be presumed that H, is not true (i.e.,

model errors are significant). Equations (ES), (E7) and {EB) suggest a few simple test statistics.
One can test the assumption that the mean residual is zero (Eq. ES) and use the mean squared
residual (Eq. E8) to test the null hypothesis Hg in (E3).

E.1 Mean Residual Test

The measurement residual, &;, or the mismatch between observations and model

predictions should have an expected value of zero at every location. If the null hypothesis is true,
a sample mean computed from many measurement residuals shouid be close to zero. This
implies a test of the following form (Luis and McLaughlin, 1992)

H, : Mean residual is negligible, £, =0

H, : Mean residual is significant, £, #0 (ES)
.- 1Y g
Test statistic: m, =|—3, ——
N f=1 G-E,—

The decision role for this test is to decide H is true if m, <v, where v is a test threshold

selected to give the desired two-sided type 1 error probability (or significance level, a}. It shoutd
be recognized that Hy in (E9) is equivalent to Hp in {(E3). If the hypothesis is true and the
measurements are sufficienily far apart for the residuals to be uncorrelated, m, will have a mean

of zero and a standard deviation of 1/+/N . If we assume that m, is normally distributed (based
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on central limit considerations), the threshold value may be readily obtained from a standard
normal probability table (Luis and McLaughlin, 1992). Although the type Il error is difficult to
evaluate explicitly, it will decrease as N becomes larger, for a specified significance level (see
discussion on hypothesis testing). If some of the measurements are too close for spatial
correlations to be ignored (as will be the case for multiple intervals in individual boreholes), the
iest sample size (N) may be reduced to account in an approximate way for correlation effects
(Luis and McLaughlin, 1992).

E.2 Mean Squared Residual Test

If one assumes that measurement residuals conform to a parficular probability
distribution, it would be expected thal a certain percentage would lie outside confidence bounds
derived from this distribution. If, for example, thet distribution is normal, the interval

hj=h;£1.960, defines a 95% confidence interval around the predicted value %, where

o, is obtained from (E8). If a significant number of the measurements ﬁ} lie outside this

interval, the null hypothesis H,, is rejected. A more convenient version of the same concept reties
on the following meansquared error test (Luis and McLaughlin, 1992)

¥ gl

. : o2 | j
Decide H is true if: y _FEIE <v (E10)
where v is a test threshold selected to give the desired type 1 error probability {or significance
level). If the hypothesis is true and the measurements are sufficiently far apart for the residuals to

be uncorrelated normally distribuied random variables, the test statistic ¥ follows a chi-squared
probability distribution with ¥ degrees of freedom. Similar to the mean test, the type II error can
be expected to decrease as ¥ becomes larger, for a specified significance level. Also, the number
of degrees of freedem may be reduced to account for correlation effects when the measurements
are closely spaced.

E.3 Analysis of the Spatial Structure of Residuals

The statistical structure of the differences between model-predicted and observed
parameters can be examined. If the examination reveals no or little correlation, the model
structure is deemed acceptable, otherwise the model siructure involves a systematic error
(Chapman et al., 1994). A series of statistical procedures can then be used to test the null
hypothesis that model error is negligible.

If a significant number of the measurements are close enough i0 one another, it is
possible te check whether or not the measurement residuals are correlated. Davis and Goodrich
(1990) and Davis ef al. {1992) propose that a model is invalid if the measurement residuals are
correlated. Their criteria of acceptance are based on the change in the variance of the residuals as
a function of the spatial lag or separation distance between measurement points. They use a
simple semivariogram of the residuals for the analysis of variance. Using the same notations as
in the previous section, this semivariogram equation can be writien as
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y{f):z—N%]—E [gﬁ; s ]2 (E11)

where / is the lag distance or vector, M) is the number of data points {pairs} separated by I, and
&4+ 18 the measurement residual at location x; + 1.

The anatysis using the semivaricgram relies on how the plot of y changes as a function of
the lag distance. If the plot is a flat honzontal line {some random variations will exist) with zero
value for ¥, then this is an indication of an accepiable model with perfect input and observation
data. If the horizontal line has a value different than zero, it indicates an acceptable model
structure, but an error in the model input, which can be adjusted or eliminated by a best-fit model
prior to computing the residuals. If ¥ increases as a function of the lag distance, then the model is
unacceptable, as there are systematic errors in the predictions. In support of this semivariogram
analysis, Davis ef al. {1992) state .”.. the semivariogram analysis, while not flawless, has proved
to be the most robust in terms of finding false models as invalid and true models as not invalid.”

E.4 Discussion of the Stochastic Validation Approach

The three tests described in sections E.1-E.3 consider different aspects of the validation
problem. The mean residual test {(seciion E.1) checks for sysiematic biases (e.g., models that
consistently predict much higher heads than measured). The mean-squared residual test {Section
E.2) checks for overall fit {e.g., models that give head gradients and flow directions opposite to
the measured). The spatial structure test (section E.3) checks for more subtle spatial features
(e.g., capturing, or lack thereof, a converging flow pattern). These tests can be applied 1o all
available measurements or to selected subsets. This gives a range of possibilities that complicates
the 1ask of reaching a conclusion about the results of a model validation. Lnis and McLaughiin’s
(1992) view is that it is wise to examine as many performance criteria or test statistics as possible
to establish an overall picture of model performance. As we mentioned earlier, we agree with
this view and consider that the diversity of tests used will help evaluate different aspects of the
model and establish some objective measure of the wvahidity and confidence in the model
predictions.

Although the approach outlined in this Appendix provides a quantitative measure to
model validation through hypothesis testing, Luis and McLaughlin {1992) caution that this
appreach should not be blindiy applied. In their application to the Las Cruces experiment, which
has an: unusually extensive set of soil data and validation measurements collected over horizontal
and vertical distances of several meters and over time scales of a few vears, they could not reach
& conclusion regarding the ability of the model to predict the observed moisture content at later
times. In addition, Ababou ef al. (1992} assert that this approach, although very valuable, is not
quite complete since the hypothesis that the model is false remains untested, and the probability
of accepting a false model cannot be evaluated by this technigue (Chapman et af., 1994). To do
this, one would need to postulate another ‘complementary’ model, or class of models, known to
be always true if the model being tested is false. To define and implement such complementary
models in an exhaustive fashion is a difficult task in the case of spatially distributed phenomena
(Ababou et af., 1592).

This cntique of the approach of Luis and McLaughlin (1992) and of the incompleteness
of hypothesis testing technigues provides more of a reason to use as many tests as possible to
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evaluate model performance. As none of these statistical tests is perfect, it is beneficial to
consider ali these tests together and link the calibration results to the results of the validation
tests for each individual realization as was shown in Figure 3. Although the possibility exists
theoretically, it is highly unlikely that an individual realization that passes the majority of these
tests represents a false model. If one accepts this realization as valid based on the results of these
many tests, one can reasonably assume that the model user’s risk, £, is very small. On the other
hand, if an individua} realization fails to pass a large number of these tests, then rejecting this
realizafion for being invalid is not expecied to represent a large type [ error.
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Appendix F: Sequential Self-Calibration (SSC) Approach

To continue reducing the uncertainty level, a refinement of the conductivity distribution
can be made using the SS5C method. In this method, new head measurements {and old ones} can
be used to condition the generation of the conductivity field in such a way thai the uncertainty in
the conductivity heterogeneity pattern around each measurement location is reduced.

Particular interest arises for conditioning on the head and concentration data in the
numerical analyses due to the fact that these data carry important information on the spatial
variation and, more importantly, the spatial hydraulic connectivity (flow channels or barriers)
that may not be captured by traditional hydraulic conductivity data. Several new geostatistically-
based inverse approaches have been developed 1o generate the hydraulic conductivity fields by
conditioning on both the hydraulic head and conductivity measurements (Zimmerman et af.,
1998). Among them, the S8C method {Sahuquiilo ef af., 1992; Gomez-Hernandez ef al., 1997,
Capilla er al., 1997, 1998; Wen ef al, 1996, 1999} is an iteralive geostatistically-based inverse
technique that allows generation of multiple equiprobable realizations of heterogeneous fields
that match the dynamic data, in addition to the typical geostatistical constraints. it has been
demonstrated to be computationally efficient for modeling hydraulic conductivity field and
capable of identifying flow channels embedded in the aquifer by conditioning on multiple
production well data (Wen et af., 1999). Current SSC method is developed for the analysis of
reservoir permeability of oil fields conditioning on oil and water flow rates. In the validation
process, we can use this method in the refinement portion of the iterative loop of modeling-
validation-refinement, This method, or any other similar one, can be sysiematically used to help
the dual purpose of refining the model predictions and reducing their uncertainty bounds.

The main steps in the SSC method are adapted and summarized here within the
application to the validation approach. First, one would start with the original hydraulic
conductivity fields generated with the original model that is yet to be evalvated and validated.
Using the flow and iranspori solutions provided by the original model for each individual
realization, one would process these realizations one at a time utilizing the new (as well as old)
collected data for validation purposes. An objective function thai measures the mismatch
between predicted and observed head and concentration data can then be written as (e.g., Wen ef
al., 1999)

awel!

0= "fﬁw; (nw)[C{mw) - C(mw)]* + > W, (nw)[A(rw) — A(nw)]* (F1)

where W_{(nw}, W, {nw) are the weights assigned to the concentration and head sampling well

aw according to sampling accuracy. Matching the head and concentration data is achieved by
minimizing this objective function, A gradient-based method is used for optimization, which
requires the calculation of “sensitivity coefficients,” the derivatives of the concentraiion and
head with respect to the hydraulic conductivity perturbation:

8C(mw) Bhinw)
BAK; ' BAK;

=1, N (F2)

where N is the number of blocks in the model. In practice, the number of actual blocks within
which conductivity is perturbed can be reduced to between 1/100 and 1/10 of the number of
blocks of the entire domain using the “master point” concept (Gomez-Hemandez er al., 1997}
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The optimal changes of conductivity are determined at these master points and then smoothly
interpolated by kriging to all grid blocks. The sensitivity coefficients are calculated as part of the
solutions of the flow and transport equations by book-marking each particle’s trajectory and
iravel times. The next step is fo determine the optimal perturbations of the conductivity at all
master locations with a gradient projection-based method. The optimal conductivity
perturbations at the master locations are then smoothly propagated to all grid cells by kriging.
One would then ge back and evaluate the objective fumction until it is sufficiently close to zero,
or less than a predeiermined tolerance value. Fewer than 20 iterations are normally required
(Wen et al., 1999).

The unique feature of the SSC method is that it results in multiple equiprobable
realizations of hydraulic conductivity fields that match observed head and concentration data and
are consistent with the spatiat statistics of the initial conductivity field realizations. This will help
reduce the uncertainty bound on model predictions (by reducing conductivity distribufion
uncertainty) and guide convergence of the realizations reduction process to a very compact and
represertative set. In addition, fast computation of sensitivity coefficients within one single
simulation makes inversjon feasible.
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